Download presentation
Presentation is loading. Please wait.
Published byGordon Dennis Modified over 6 years ago
1
Form factor studies for analyses of transfer reactions
Alain Gillibert (CEA/IRFU/SPhN) Work in progress Ph.D Thesis, F. Flavigny PRL 110, (2013) Wood-Saxon form factors ab initio form factors A. Gillibert ECT Trento June 2016 test
2
A. Gillibert ECT Trento June 2016
What we would like to measure and discuss…. A. Gillibert ECT Trento June 2016
3
A. Gillibert ECT Trento June 2016
What we have access to… A. Gillibert ECT Trento June 2016
4
A. Gillibert ECT Trento June 2016
(e,e’p) Study of proton-hole states validity and limit of a mean-field description effect of nuclear correlations A. Gillibert ECT Trento June 2016
5
A. Gillibert ECT Trento June 2016
6
A. Gillibert ECT Trento June 2016
7
A. Gillibert ECT Trento June 2016
8
A. Gillibert ECT Trento June 2016
9
Shell occupancies in stable nuclei
A. Gillibert ECT Trento June 2016
10
A. Gillibert ECT Trento June 2016
Unstable nuclei Direct reactions Major assumption : separation of structure inputs and reaction mechanism What is done Measurement σexp i->f calculation with a reaction model σsp (nlj) Ratio (C2S )exp a σexp i->f / σsp (nlj) comparaison to structure model (C2S )th Need for consistency between structure and reaction model A. Gillibert ECT Trento June 2016
11
Nucleon removal from exotic nuclei
≈ 700 MeV/u C. Rodriguez-Tajes et al., Phys.Rev. C 82, (2010) 10C 120 MeV/u G. Grinyer et al., Phys.Rev.Lett. 106, (2011) LBL Bevalac 2.1 GeV/n, 1.7 GeV/n D.L. Olson, Phys. Rev. C 28 (1983) 1602; D.L. Olson, Phys. Rev. C 24 (1981) 1529 A. Gillibert ECT Trento June 2016
12
Stripping cross sections at intermediate energies
Projectile energy large enough to consider that the intrinsic degrees of freedom are frozen Probability to leave the core intact Probability to remove the nucleon A A-1 NN cross section Core density No explicit treatment of core excitations A. Gillibert ECT Trento June 2016
13
Nucleon removal from exotic nuclei
ΔS = |Sn – Sp | (MeV) Intermediate-energy knockout A. Gillibert ECT Trento June 2016
14
A. Gillibert ECT Trento June 2016
B.P. Kay et al., PRL (2013 ) ΔS (MeV) = |Sp – Sn| A. Gillibert ECT Trento June 2016
15
A. Gillibert ECT Trento June 2016
Question Are Reduction Factors from knockout (<100 MeV/u) and transfer consistent ? Experiment and data One-nucleon knockout from 14O, 16C at intermediate energy (NSCL, MSU) F. Flavigny, et al., PRL (2012) One-nucleon transfer from 14O 18 MeV/u at SPIRAL, GANIL F. Flavigny, et al., PRL (2013) Perform a consistent analysis on the same nucleus with same form factor Advantage of 14O Large value ΔS = 18.6 MeV Beam intensity high enough for (d,3H) (d,3He) transfer measurements Closed sub-shell nucleus with data available for 16,18O A. Gillibert ECT Trento June 2016
16
Ion Source Primary beam : 16O 95 A.MeV, 1.4 kW SPIRAL Target
GANIL SPIRAL1 14O 18 MeV/nucleon, 18Ne VAMOS CSS1 CSS2 SPIRAL Target CIME Primary beam : 16O 95 A.MeV, 1.4 kW Ion Source MUST2 Beam : 14O8+ pure 18.1 A.MeV ~ pps A. Gillibert ECT Trento June 2016
17
Fully exclusive measurement
Experimental Setup Fully exclusive measurement SPIRAL Beam intensity: pure, pps CD2 targets: 0.5,1.5 and 8.5 mg.cm-2 Reactions: (d,d), (d,3H) and (d,3He) MUST2 array 10x10 cm2 300μm DSSSD + SiLi or CsI VAMOS spectrometer in dispersive mode A. Gillibert ECT Trento June 2016
18
One-neutron pickup channel One-proton pickup channel
Experimental data set Elastic channel One-neutron pickup channel [M. Gaillard et al., Nucl. Phys. A 119, 161 (1968)] One-proton pickup channel Published Data on 16O and 18O [V. Bechtold et al., Phys. Lett. B 72,169 (1977)] [M. Gaillard et al., Nucl. Phys. A 119, 161 (1968)] [D. Hartwig et al., Z. Phys. 246, 418 (1971)] A. Gillibert ECT Trento June 2016
19
A. Gillibert ECT Trento June 2016
20
A. Gillibert ECT Trento June 2016
Reaction Framework Input Potential: 14O+ 2H Folding of a nucleon-nucleus optical potential over the deuteron wave function; complex potential lv, lw A.J. Koning et J.P. Delaroche, NPA 713, 231 (2003) Validated on elastic data Output potentials: 13O + 3H and 13N + 3He Global potential D. Y. Pang et al., PRC 79, (2009) C. M. Perey and F. G. Perey, ADNDT 17,17,1 (1976) Form factors: <14O | 13O + n> and <14O | 13N + p> Two prescriptions: Woods Saxon, Hartree Fock constrained Ab-initio overlap (SCGF) Coupling scheme Coupled Reaction Channel analysis (CRC) Coupled discretized continuum channel (CDCC) for deuteron breakup 13N+3He 13O+3H 14O+2H A. Gillibert ECT Trento June 2016
21
A. Gillibert ECT Trento June 2016
Elastic scattering 14O + 2H Energy resolution 720 keV Angular resolution 0.2 ° Ed (MeV) Θlab (deg) 13N + 3He 13O + 3H 14O + 2H λV = 1.1 , λW = 0.8 A. Gillibert ECT Trento June 2016
22
A. Gillibert ECT Trento June 2016
Elastic scattering 13N + 3He, 13O + 3H Global potentials C.M. Perey, ADNDT 17, 1(1976) D.Y. Pang, Phys. Rev. C 79, (2009) 12C + 40 MeV DWBA 12C + 17 MeV Need for a better local potential for exit channel A. Gillibert ECT Trento June 2016 test
23
Test Case : stable 16O data in direct kinematics
C2Sexp = 0,93 (9) rrms from M. Leuschner et al., PRC 49, 955 (1994) Form factors X Standard arbitrary value: (r0 , a0) : (1.25 fm , 0.65 fm) rrms from 16O(e,e’p)15Ngs : rrms = 2,943 fm WS parameters to reproduce rrms and Sp: r0 = 1.46 fm a0 = 0.65 fm Single-particle HF w.f. with Sly4 interaction: rrms(HF) = 2,95 fm Data points from : [V. Bechtold et al., Phys. Lett. B 72,169 (1977)] [M. Gaillard et al., Nucl. Phys. A 119, 161 (1968)] A. Gillibert ECT Trento June 2016
24
14,16O Wood Saxon Form factor
16O (e,e’p) 15N 0.00 MeV 1/2- (p1/2) RRMS = 2.943(30) fm M. Leuschner et al., Phys. Rev. C 49 (1994) 955 16O HFB calculation SLy 4 interaction RRMS( p1/2) = 2.95 fm ro = 1.46 fm ao = 0.65 fm 14O HFB calculation SLy 4 interaction RRMS( p1/2) = 3.03 fm ro = 1.12 fm RRMS( p3/2) = 2.77 fm ro = 1.23 fm RRMS( p3/2) = 2.69 fm ro = 1.40 fm δ (RMS) δ ro 16O p1/2 p3/2 14O A. Gillibert ECT Trento June 2016
25
14O results (Wood Saxon form factor)
C2Sexp strongly depends on radii Ex: DC2S/C2S ≈ 6 Drrms/ rrms Δℓ = 1 Δℓ = 1 A. Gillibert ECT Trento June 2016
26
Dependence of C2Sexp on r0
A. Gillibert ECT Trento June 2016
27
Dependence of C2Sexp on r0
14O(d,t) r0 = 1.4 fm C2Sexp ≈ 1.3 r0 = 1.25 fm C2Sexp ≈ 2.1 11% change 60% change A. Gillibert ECT Trento June 2016
28
J. Vernotte et al., NP A571 (1994) 1 (d, 3He)
A. Gillibert ECT Trento June 2016
29
Results with WS overlap functions
δ (RMS) δro box Error bars due to exp. Uncertainties OFs : WS (HFB constrained) C2Sth: Shell model with WBT interaction sth(q) = C2Sth ssp(q) 48 analysis: 2 sets of C2Sth: - WBT Interaction 0p shell + 2ħΩ - Utsuno int. 0p1s0d space 3 HF calculations for radii 8 combinations of optical potentials for entrance and exit channels c2min Exp. Error (1 set) Systematic error from 48 data sets Rs = a . DS + b a = (24)(12) MeV-1 b = Rs(0) = 0.538(28)(18) A. Gillibert ECT Trento June 2016
30
A. Gillibert ECT Trento June 2016
Ab initio form factor Ab-inito SFth and overlaps ( from C. Barbieri and A. Cipollone) Single-particle Green’s function (third order diagrammatic construction method) Chiral two-body + three-body interactions (cutoff l=1.88 fm-1) sth(q) = C2Sth ssp(q) All microscopic OFs rescaled by the same factor to account for the differences of predicted and experimental rms radius of 16O one phenomenological correction A. Gillibert ECT Trento June 2016
31
A. Gillibert ECT Trento June 2016
Notch test Notch test Gaussian shape added to the radial shape Effect on the fitted cs (dσ/dΩ)pert [(dσ/dΩ)pert – (dσ/dΩ)unpert]2 [(dσ/dΩ)unpert]2 c2 = A. Gillibert ECT Trento June 2016
32
A. Gillibert ECT Trento June 2016
[(dσ/dΩ)pert – (dσ/dΩ)unpert]2 [(dσ/dΩ)unpert]2 c2 = A. Gillibert ECT Trento June 2016
33
A. Gillibert ECT Trento June 2016
Notch test 16O O SCGF form factor, A. Cipolonne et al., Wood Saxon form factor A. Gillibert ECT Trento June 2016
34
A. Gillibert ECT Trento June 2016
Result overview Rs = a . DS + b A. Gillibert ECT Trento June 2016
35
A. Gillibert ECT Trento June 2016
Summary Transfer experiment 14O(d,3H) (d,3He) ΔS =37 MeV Rs = α ΔS + β α ≈ 0 To be confirmed with other nuclei 18Ne Improvement of the exit channel potential Test of ab initio overlap functions (SCGF, next NCSM) A. Gillibert ECT Trento June 2016
36
A. Gillibert ECT Trento June 2016
Thank you! F. Flavigny, S. Boissinot, A. Corsi, A. G., V. Lapoux, L. Nalpas, A.Obertelli, E.C. Pollacco, A. Signoracci, CEA Saclay D. Beaumel, S. Giron, J. Guillot, F. Hammache, B. Lecron, A. Matta, Morfouace, N. de Séreville, IPN Orsay B. Bastin, G. Burgunder, A. Lemasson, R. Raabe, M. Rejmund, A. Shrivastava, GANIL Caen J. Gibelin, LPC Caen N. Keeley, NCNR Warsaw C. Barbieri, A. Cippolone, U. Of Surrey P. Navratil, Triumf A. Gillibert ECT Trento June 2016
37
Ab initio form factor : Notch test
<14O | 13O + n > [(dσ/dΩ)pert – (dσ/dΩ)unpert]2 [(dσ/dΩ)unpert]2 c2 = A. Gillibert ECT Trento June 2016
38
A. Gillibert ECT Trento June 2016
EDSSSD (MeV) ToF (a.u.) ΔEDSSSD (MeV) ESiLi (MeV) MUST VAMOS A. Gillibert ECT Trento June 2016
39
A. Gillibert ECT Trento June 2016
14O(d,3H)13O E* (MeV) Et (MeV) lab (deg) MUST2+VAMOS MUST2 alone Δℓ = 1 3/2- 1/2- (3/2-) Expt. SP-SM 2750 4210 6020 7853 5408 =1.2MeV Sp = 1516 keV 13O A. Gillibert ECT Trento June 2016
40
A. Gillibert ECT Trento June 2016
14O(d,3He)13N 1/2- 3/2- Expt. SP-SM 2365 3502 3547 3643 Sp = 1944 keV 13N 1/2+ 5/2+ Δℓ = 1 E3He (MeV) Θlab (deg) A. Gillibert ECT Trento June 2016
41
A. Gillibert ECT Trento June 2016
42
Parallel-momentum distributions
Loosely-bound nucleon Deeply-bound nucleon F. Flavigny et al., PRL (2012) A. Gillibert ECT Trento June 2016
43
A. Gillibert ECT Trento June 2016
44
One-nucleon removal from 14O and 16C at the NSCL
16C beam at 70 MeV/nucleon 14O beam at 53 MeV/nucleon A. Gillibert ECT Trento June 2016
45
Rs: comparison to existing data
s(16C-1n)= 80(7) mb s(14O-1p)= 64(6) mb s(16C-1p)= 15(1) mb s(14O-1n)= 14(1) mb = |Sn – Sp | (MeV) A. Gillibert ECT Trento June 2016
46
Dissipative processes ?
1p knock-out 16C 1/2+ 3/2- 1/2- states in 15B Dissipative processes 5/2-, 7/2- 16C F. Flavigny et al., PRL (2012) A. Gillibert ECT Trento June 2016
47
A. Gillibert ECT Trento June 2016
High-momentum cutoff ef =0 ef= kinetic energy of the fragments (nucleon + target) in the lab. frame Momentum threshold (CUT) for ef =0 A. Bonaccorso, Phys. Rev. C 60, (1999). dp “barely visible” effect in published data A. Gade et al., PRC 71, (2005). A. Gade et al., PRC 77, (2008). G. Grinyer et al., PRL 106, (2011). 70 MeV/u 85 MeV/u 80 MeV/u 120 MeV/u A. Gillibert ECT Trento June 2016
48
A. Gillibert ECT Trento June 2016
14O (p,d) 13O @ 51 MeV/u Expt points from D. Suzuki et al., EPJA (2012) Wood-Saxon form factor C2Sexp from 14O(d,3H)13O A. Gillibert ECT Trento June 2016
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.