Presentation is loading. Please wait.

Presentation is loading. Please wait.

Linear equations.

Similar presentations


Presentation on theme: "Linear equations."β€” Presentation transcript:

1 Linear equations

2 Equations – simple examples
How do solve equations? πŸ‘π’™=𝟏

3 Equations – simple examples
How do solve equations? πŸ‘π’™=𝟏 πŸ‘π’™ πŸ‘ = 𝟏 πŸ‘

4 Equations – simple examples
How do solve equations? πŸ‘π’™=𝟏 πŸ‘π’™ πŸ‘ = 𝟏 πŸ‘ 𝒙= 𝟏 πŸ‘

5 Equations – simple examples
How do solve equations? 𝒙 𝟐 =πŸ’

6 Equations – simple examples
How do solve equations? 𝒙 𝟐 =πŸ’ 𝒙 𝟐 = πŸ’

7 Equations – simple examples
How do solve equations? 𝒙 𝟐 =πŸ’ 𝒙 𝟐 = πŸ’ 𝒙=𝟐, 𝒙=βˆ’πŸ

8 Equations – simple examples
How do solve equations? 𝒆 𝒙 =πŸ–

9 Equations – simple examples
How do solve equations? 𝒆 𝒙 =πŸ– 𝒍𝒏 𝒆 𝒙 =𝒍𝒏 πŸ–

10 Equations – simple examples
How do solve equations? 𝒆 𝒙 =πŸ– 𝒍𝒏 𝒆 𝒙 =𝒍𝒏 πŸ– 𝒙=𝒍𝒏 πŸ–

11 Equations – simple examples
How do solve equations? 𝒅 𝒅𝒙 𝒇(𝒙)=πŸ‘

12 Equations – simple examples
How do solve equations? 𝒅 𝒅𝒙 𝒇(𝒙)=πŸ‘ ∫ 𝒅𝒇(𝒙) 𝒅𝒙 𝒅𝒙=βˆ«πŸ‘π’…π’™

13 Equations – simple examples
How do solve equations? 𝒅 𝒅𝒙 𝒇(𝒙)=πŸ‘ ∫ 𝒅𝒇(𝒙) 𝒅𝒙 𝒅𝒙=βˆ«πŸ‘π’…π’™ βˆ«π’…π’‡=𝒇=βˆ«πŸ‘π’…π’™=πŸ‘π’™+π‘ͺ

14 Equations – simple examples
How do solve equations? For each type of equation do we have to know special solving procedure?

15 Equations – simple examples
How do solve equations? No!

16 General equation may be written as:
𝑾𝒉𝒂𝒕 π’Šπ’” π’Šπ’ π’„π’π’Žπ’Žπ’π’? General equation may be written as: 𝑨𝒙=𝒃

17 General equation may be written as:
𝑾𝒉𝒂𝒕 π’Šπ’” π’Šπ’ π’„π’π’Žπ’Žπ’π’? General equation may be written as: 𝑨𝒙=𝒃 unknown

18 General equation may be written as:
𝑾𝒉𝒂𝒕 π’Šπ’” π’Šπ’ π’„π’π’Žπ’Žπ’π’? General equation may be written as: 𝑨𝒙=𝒃 𝑨=πŸ‘βˆ—, 𝟐 , 𝒆 , 𝒅 𝒅𝒙 operation unknown

19 π‘―π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’Šπ’•?

20 π‘―π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’Šπ’•? Same scheme as previously… We use inverse operation to extract x

21 Same scheme as previously… We use inverse operation to extract x
π‘―π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’Šπ’•? Same scheme as previously… We use inverse operation to extract x 𝑨 𝑨 βˆ’πŸ =𝑰

22 Same scheme as previously… We use inverse operation to extract x
π‘―π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’Šπ’•? Same scheme as previously… We use inverse operation to extract x 𝑨 𝑨 βˆ’πŸ =𝑰 operation Inverse operation

23 Same scheme as previously… We use inverse operation to extract x
π‘―π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’Šπ’•? Same scheme as previously… We use inverse operation to extract x 𝑨 𝑨 βˆ’πŸ =𝑰 operation Inverse operation Unit operation

24 π‘Όπ’π’Šπ’• π’π’‘π’†π’“π’‚π’•π’Šπ’π’ 𝒅𝒐𝒆𝒔… Nothing 𝑰𝒙=𝒙𝑰=𝒙

25 𝑺𝒐 π’‰π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’‚π’π’š π’†π’’π’–π’‚π’•π’Šπ’π’?
𝑨𝒙=𝒃

26 Simple – apply inverse operation
𝑺𝒐 π’‰π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’‚π’π’š π’†π’’π’–π’‚π’•π’Šπ’π’? Simple – apply inverse operation 𝑨𝒙=𝒃 𝑨𝒙=𝒃 | 𝑨 βˆ’πŸ

27 Simple – apply inverse operation
𝑺𝒐 π’‰π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’‚π’π’š π’†π’’π’–π’‚π’•π’Šπ’π’? Simple – apply inverse operation 𝑨𝒙=𝒃 𝑨𝒙=𝒃 | 𝑨 βˆ’πŸ 𝑨 βˆ’πŸ 𝑨𝒙= 𝑨 βˆ’πŸ 𝒃

28 Simple – apply inverse operation
𝑺𝒐 π’‰π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’‚π’π’š π’†π’’π’–π’‚π’•π’Šπ’π’? Simple – apply inverse operation 𝑨𝒙=𝒃 𝑨𝒙=𝒃 | 𝑨 βˆ’πŸ 𝑨 βˆ’πŸ 𝑨𝒙= 𝑨 βˆ’πŸ 𝒃 𝑰𝒙= 𝑨 βˆ’πŸ 𝒃

29 Simple – apply inverse operation
𝑺𝒐 π’‰π’π’˜ 𝒕𝒐 𝒔𝒐𝒍𝒗𝒆 π’‚π’π’š π’†π’’π’–π’‚π’•π’Šπ’π’? Simple – apply inverse operation 𝑨𝒙=𝒃 𝑨𝒙=𝒃 | 𝑨 βˆ’πŸ 𝑨 βˆ’πŸ 𝑨𝒙= 𝑨 βˆ’πŸ 𝒃 𝑰𝒙= 𝑨 βˆ’πŸ 𝒃 𝒙= 𝑨 βˆ’πŸ 𝒃

30 𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’?

31 𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’? We have general recipe to solve any equation!

32 Write down the equation.
𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’? We have general recipe to solve any equation! Write down the equation.

33 Write down the equation. Identify operation acting on x.
𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’? We have general recipe to solve any equation! Write down the equation. Identify operation acting on x.

34 𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’? We have general recipe to solve any equation!
Write down the equation. Identify operation acting on x. Find inverse operation.

35 𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’? We have general recipe to solve any equation!
Write down the equation. Identify operation acting on x. Find inverse operation. Apply it on both sides.

36 𝑾𝒉𝒂 𝒕 β€² 𝒔 𝒕𝒉𝒆 π’ˆπ’‚π’Šπ’? We have general recipe to solve any equation!
Write down the equation. Identify operation acting on x. Find inverse operation. Apply it on both sides. Enjoy the result!

37 𝑾𝒉𝒂𝒕 𝒂𝒃𝒐𝒖𝒕 π’π’Šπ’π’†π’‚π’“ π’†π’’π’–π’‚π’•π’Šπ’π’π’”?
Example: 𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐

38 𝑾𝒉𝒂𝒕 𝒂𝒃𝒐𝒖𝒕 π’π’Šπ’π’†π’‚π’“ π’†π’’π’–π’‚π’•π’Šπ’π’π’”?
Example: 𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐 β†’ 𝒙=πŸ‘ π’š=𝟏

39 π‘―π’π’˜ 𝒂𝒃𝒐𝒖𝒕 π’•π’‰π’Šπ’” 𝒐𝒏𝒆? πŸ‘π’™+πŸπ’šβˆ’π’›+π’Œ=πŸ‘ βˆ’πŸπŸ‘π’™βˆ’πŸπŸ’πŸ“π’š+πŸπŸπ’›βˆ’πŸ–π’Œ=𝝅 πŸ“π’™+πŸ•π’šβˆ’πŸπŸŽπ’›βˆ’πŸ—π’Œ=βˆ’πŸ—πŸ 𝒙+π’š+𝒛=𝟐

40 π‘΄π’‚π’•π’“π’Šπ’„π’†π’” 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 𝑩= 𝟏 𝟐 , π‘ͺ= 𝟏 𝟐 , 𝑫= πŸ’ πŸ” πŸ— πŸ– πŸ‘ πŸ“

41 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Additon 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 𝑩= 𝟎 𝟐 πŸ” πŸ“

42 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Additon 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 𝑩= 𝟎 𝟐 πŸ” πŸ“ 𝑨+𝑩= 𝟐+𝟎 𝟏+𝟐 πŸ‘+πŸ” 𝟐+πŸ“

43 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Additon 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 𝑩= 𝟎 𝟐 πŸ” πŸ“ 𝑨+𝑩= 𝟐+𝟎 𝟏+𝟐 πŸ‘+πŸ” 𝟐+πŸ“

44 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Additon 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 𝑩= 𝟎 𝟐 πŸ” πŸ“ 𝑨+𝑩= 𝟐+𝟎 𝟏+𝟐 πŸ‘+πŸ” 𝟐+πŸ“

45 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Additon 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 𝑩= 𝟎 𝟐 πŸ” πŸ“ 𝑨+𝑩= 𝟐+𝟎 𝟏+𝟐 πŸ‘+πŸ” 𝟐+πŸ“ = 𝟐 πŸ‘ πŸ— πŸ•

46 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Multiplication 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 , 𝑩= 𝟎 𝟐 πŸ” πŸ“ π‘¨βˆ—π‘©= =

47 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Multiplication 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 , 𝑩= 𝟎 𝟐 πŸ” πŸ“ π‘¨βˆ—π‘©= πŸβˆ—πŸŽ+πŸβˆ—πŸ” = πŸ”

48 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Multiplication 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 , 𝑩= 𝟎 𝟐 πŸ” πŸ“ π‘¨βˆ—π‘©= πŸβˆ—πŸŽ+πŸβˆ—πŸ” πŸβˆ—πŸ+πŸβˆ—πŸ“ = πŸ” πŸ—

49 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Multiplication 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 , 𝑩= 𝟎 𝟐 πŸ” πŸ“ π‘¨βˆ—π‘©= πŸβˆ—πŸŽ+πŸβˆ—πŸ” πŸβˆ—πŸ+πŸβˆ—πŸ“ πŸ‘βˆ—πŸŽ+πŸβˆ—πŸ” = πŸ” πŸ— 𝟏𝟐

50 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Multiplication 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 , 𝑩= 𝟎 𝟐 πŸ” πŸ“ π‘¨βˆ—π‘©= πŸβˆ—πŸŽ+πŸβˆ—πŸ” πŸβˆ—πŸ+πŸβˆ—πŸ“ πŸ‘βˆ—πŸŽ+πŸβˆ—πŸ” πŸ‘βˆ—πŸ+πŸβˆ—πŸ“ = πŸ” πŸ— 𝟏𝟐 πŸπŸ”

51 𝑾𝒉𝒂𝒕 𝒄𝒂𝒏 π’˜π’† 𝒅𝒐 π’˜π’Šπ’•π’‰ π’Žπ’‚π’•π’“π’Šπ’„π’†π’”?
Division??? 𝑨= 𝟐 𝟏 πŸ‘ 𝟐 , 𝑩= 𝟎 𝟐 πŸ” πŸ“ 𝑨 𝑩 =???

52 𝑰𝒏𝒗𝒆𝒓𝒔𝒆 π’Žπ’‚π’•π’“π’Šπ’™ 𝑨 𝑨 βˆ’πŸ = 𝑨 βˆ’πŸ 𝑨=𝑰

53 𝑰𝒏𝒗𝒆𝒓𝒔𝒆 π’Žπ’‚π’•π’“π’Šπ’™ 𝑨 𝑨 βˆ’πŸ = 𝑨 βˆ’πŸ 𝑨=𝑰 𝑰= 𝟏 𝟎 𝟎 𝟎 𝟏 𝟎 𝟎 𝟎 𝟏

54 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm 1. Compute det(A).

55 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟏 𝟏 βˆ’πŸ =

56 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟏 𝟏 βˆ’πŸ = πŸβˆ— βˆ’πŸ

57 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟏 𝟏 βˆ’πŸ = πŸβˆ— βˆ’πŸ βˆ’πŸβˆ—πŸ=βˆ’πŸ

58 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ—

59 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ— 𝟏

60 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ— πŸβˆ— βˆ’πŸ 𝟏+𝟏 1st 1st

61 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ— πŸβˆ— βˆ’πŸ 𝟏+𝟏 βˆ— 𝟐 𝟏 𝟏 πŸ— 1st 1st

62 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ— πŸβˆ— βˆ’πŸ 𝟏+𝟏 βˆ— 𝟐 𝟏 𝟏 πŸ— +πŸŽβˆ— βˆ’πŸ 𝟐+𝟏 𝟐 πŸ‘ 𝟏 πŸ—
πŸβˆ— βˆ’πŸ 𝟏+𝟏 βˆ— 𝟐 𝟏 𝟏 πŸ— +πŸŽβˆ— βˆ’πŸ 𝟐+𝟏 𝟐 πŸ‘ 𝟏 πŸ— Type equation here. 1st 2nd

63 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ— πŸβˆ— βˆ’πŸ 𝟏+𝟏 βˆ— 𝟐 𝟏 𝟏 πŸ— +πŸŽβˆ— βˆ’πŸ 𝟐+𝟏 𝟐 πŸ‘ 𝟏 πŸ— +πŸ“βˆ— βˆ’πŸ πŸ‘+𝟏 βˆ— 𝟐 πŸ‘ 𝟐 𝟏 = 1st 3rd

64 π‘«π’†π’•π’†π’“π’Žπ’Šπ’π’‚π’π’•π’” 𝟏 𝟐 πŸ‘ 𝟎 𝟐 𝟏 πŸ“ 𝟏 πŸ— πŸβˆ— βˆ’πŸ 𝟏+𝟏 βˆ— 𝟐 𝟏 𝟏 πŸ— +πŸŽβˆ— βˆ’πŸ 𝟐+𝟏 𝟐 πŸ‘ 𝟏 πŸ— +πŸ“βˆ— βˆ’πŸ πŸ‘+𝟏 βˆ— 𝟐 πŸ‘ 𝟐 𝟏 = πŸβˆ—πŸβˆ—πŸπŸ•+𝟎+πŸβˆ—πŸβˆ—πŸ”=πŸ“

65 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm Compute det(A).
π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm Compute det(A). 𝑨 βˆ’πŸ = 𝟏 𝒅𝒆𝒕 𝑨 βˆ—π’”π’•π’‰

66 π‘Ύπ’‰π’š 𝒅𝒐 π’˜π’† 𝒏𝒆𝒆𝒅 π’Šπ’•? 𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐 πŸβˆ—π’™+πŸβˆ—π’š=πŸ’ πŸβˆ—π’™βˆ’πŸβˆ—π’š=𝟐

67 π‘Ύπ’‰π’š 𝒅𝒐 π’˜π’† 𝒏𝒆𝒆𝒅 π’Šπ’•? 𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐 𝟏 𝟏 𝟏 βˆ’πŸ 𝒙 π’š = πŸ’ 𝟐

68 π‘Ύπ’‰π’š 𝒅𝒐 π’˜π’† 𝒏𝒆𝒆𝒅 π’Šπ’•? 𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐 𝑨 𝒙 =𝑏 𝑨 βˆ’πŸ = 𝟏 𝟏 𝟏 βˆ’πŸ βˆ’πŸ 𝒃= πŸ’ 𝟐

69 π‘Ύπ’‰π’š 𝒅𝒐 π’˜π’† 𝒏𝒆𝒆𝒅 π’Šπ’•? 𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐 𝑨 𝒙 =𝑏 𝒙 = 𝑨 βˆ’πŸ 𝒃
𝒙+π’š=πŸ’ π’™βˆ’π’š=𝟐 𝑨 𝒙 =𝑏 𝒙 = 𝑨 βˆ’πŸ 𝒃 𝑨 βˆ’πŸ = 𝟏 𝟏 𝟏 βˆ’πŸ βˆ’πŸ 𝒃= πŸ’ 𝟐

70 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? 100% algorithm 𝟏 𝟏 𝟏 βˆ’πŸ β†’

71 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? Calculate minors 𝟏 𝟏 𝟏 βˆ’πŸ β†’ (βˆ’πŸ) 𝟏+𝟏 βˆ’πŸ 1st 1st

72 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? Calculate minors
𝟏 𝟏 𝟏 βˆ’πŸ β†’ (βˆ’πŸ) 𝟏+𝟏 βˆ’πŸ (βˆ’πŸ) 𝟐+𝟏 βˆ—|𝟏| 1st 2nd

73 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? Calculate minors
𝟏 𝟏 𝟏 βˆ’πŸ β†’ (βˆ’πŸ) 𝟏+𝟏 βˆ’πŸ (βˆ’πŸ) 𝟏+𝟐 βˆ— 𝟏 (βˆ’πŸ) 𝟐+𝟏 βˆ—|𝟏| 1st 2nd

74 𝟏 𝟏 𝟏 βˆ’πŸ β†’ (βˆ’πŸ) 𝟏+𝟏 βˆ’πŸ (βˆ’πŸ) 𝟏+𝟐 βˆ— 𝟏 (βˆ’πŸ) 𝟐+𝟏 βˆ—|𝟏| (βˆ’πŸ) 𝟐+𝟐 βˆ— 𝟏
π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? Calculate minors 𝟏 𝟏 𝟏 βˆ’πŸ β†’ (βˆ’πŸ) 𝟏+𝟏 βˆ’πŸ (βˆ’πŸ) 𝟏+𝟐 βˆ— 𝟏 (βˆ’πŸ) 𝟐+𝟏 βˆ—|𝟏| (βˆ’πŸ) 𝟐+𝟐 βˆ— 𝟏 βˆ’πŸ βˆ’πŸ βˆ’πŸ 𝟏 𝑻 = βˆ’πŸ βˆ’πŸ βˆ’πŸ 𝟏 2nd 2nd

75 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? Transpose βˆ’πŸ βˆ’πŸ βˆ’πŸ 𝟏 𝑻

76 Transpose

77 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? Transpoe βˆ’πŸ βˆ’πŸ βˆ’πŸ 𝟏 𝑻 = βˆ’πŸ βˆ’πŸ βˆ’πŸ 𝟏

78 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm Compute det(A).
π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm Compute det(A). 𝑨 βˆ’πŸ = 𝟏 𝒅𝒆𝒕 𝑨 βˆ—π’”π’•π’‰= =βˆ’ 𝟏 𝟐 βˆ’πŸ βˆ’πŸ βˆ’πŸ 𝟏 = 𝟎.πŸ“ 𝟎.πŸ“ 𝟎.πŸ“ βˆ’πŸŽ.πŸ“

79 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm Compute det(A).
π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝑨 βˆ’πŸ ? 100% algorithm Compute det(A). 𝑨 βˆ’πŸ = 𝟏 𝒅𝒆𝒕 𝑨 βˆ—π’”π’•π’‰ π‘ͺπ’π’Žπ’‘π’–π’•π’† 𝒙 = 𝑨 βˆ’πŸ 𝒃

80 π‘―π’π’˜ 𝒕𝒐 π’„π’π’Žπ’‘π’–π’•π’† 𝒔𝒕𝒉? 100% algorithm 𝒙 = 𝑨 βˆ’πŸ 𝒃
𝒙 = 𝟎.πŸ“ 𝟎.πŸ“ 𝟎.πŸ“ βˆ’πŸŽ.πŸ“ πŸ’ 𝟐 = 𝟎.πŸ“βˆ—πŸ’+𝟎.πŸ“βˆ—πŸ 𝟎.πŸ“βˆ—πŸ’βˆ’πŸŽ.πŸ“βˆ—πŸ = πŸ‘ 𝟏

81 π‘¬π’‚π’”π’š?

82 π‘¬π’‚π’”π’š? No!

83 π‘¬π’‚π’”π’š? No! π‘¨π’…π’—π’‚π’π’•π’‚π’ˆπ’†π’”: Always works – strict , clear procedure, no thinking, no guessing.

84 π‘¬π’‚π’”π’š? No! π‘¨π’…π’—π’‚π’π’•π’‚π’ˆπ’†π’”: Always works – strict , clear procedure, no thinking, no guessing. Test for solubility : det(A) β‰ 0.

85 π‘¬π’‚π’”π’š? No! π‘¨π’…π’—π’‚π’π’•π’‚π’ˆπ’†π’”: Always works – strict , clear procedure, no thinking, no guessing. Test for solubility : det(A) β‰ 0. Test for possible β€žinsane” results: det(A) β‰ˆ0.

86 π‘¬π’‚π’”π’š? No! π‘¨π’…π’—π’‚π’π’•π’‚π’ˆπ’†π’”: Always works – strict , clear procedure, no thinking, no guessing. Test for solubility : det(A) β‰ 0. Test for possible β€žinsane” results: det(A) β‰ˆ0. Works perfectly with a computer.


Download ppt "Linear equations."

Similar presentations


Ads by Google