Presentation is loading. Please wait.

Presentation is loading. Please wait.

Predicting and measuring the total inelastic cross section at the LHC

Similar presentations


Presentation on theme: "Predicting and measuring the total inelastic cross section at the LHC"— Presentation transcript:

1 Predicting and measuring the total inelastic cross section at the LHC
Konstantin Goulianos The Rockefeller University Valparaiso, Chile   May 19-20, 2011

2 The total inelastic pp cross section at LHC K. Goulianos
Contents 1) Introduction gaps 2) Predicting the total s: st 3) Predicting the total-elastic s: sel total-inelastic s: sinel = st-sel 4) Measuring the “visible”-inelastic s: sinelvis 5) Extrapolating to measured-inelastic s: sinelmeas 6) A Monte Carlo algorithm for the LHC - nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

3 The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps diffraction, saturation and pp cross sections at LHC 2) Predicting the total s st 3) Predicting the total-elastic s sel  total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

4 The total inelastic pp cross section at LHC K. Goulianos
Why study diffraction? Two reasons: one fundamental / one practical. fundamental practical: underlying event (UE), triggers, calibrations, acceptance, … the UE affects all physics studies at LHC sT optical theorem Im fel(t=0) dispersion relations Re fel(t=0) measure sT & r-value at LHC: check for violation of dispersion relations  sign for new physics Bourrely, C., Khuri, N.N., Martin, A.,Soffer, J., Wu, T.T Diffraction saturation  sT NEED ROBUST MC SIMULATION OF SOFT PHYSICS Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

5 MC simulations: Pandora’s box was unlocked at the LHC!
Presently available MCs based on pre-LHC data were found to be inadequate for LHC MCs disagree in the way they handle diffraction MC tunes: the “evils of the world” were released from Pandora’s box at the LHC … but fortunately, hope remained in the box  a good starting point for this talk! Pandora's box is an artifact in Greek mythology, taken from the myth of Pandora's creation around line 60 of Hesiod's Works And Days. The "box" was actually a large jar (πιθος pithos) given to Pandora (Πανδώρα) ("all-gifted"), which contained all the evils of the world. When Pandora opened the jar, the entire contents of the jar were released, but for one – hope Nikipedia Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

6 CMS: observation of Diffraction at 7 TeV
(an early example of MC inadequacies) • No single MC describes the data in their entirety Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

7 Diffractive gaps definition: gaps not exponentially suppressed
Particle production Rapidity gap h f Dh≈-ln x ln MX2 ln s No radiation Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

8 Diffractive pbar-p studies @ CDF
sT=Im fel (t=0) Elastic scattering Total cross section f f OPTICAL THEOREM GAP h h SD DD DPE SDD=SD+DD Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

9 Basic and combined diffractive processes
gap DD SD a 4-gap diffractive process Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

10 Regge theory – values of so & g?
KG-1995: PLB 358, 379 (1995) Parameters: s0, s0' and g(t) set s0‘ = s0 (universal IP ) determine s0 and gPPP – how? Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

11 A complication …  Unitarity!
ds/dt ssd grows faster than st as s increases  unitarity violation at high s (similarly for partial x-sections in impact parameter space) the unitarity limit is already reached at √s ~ 2 TeV Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

12 Sigma-SD vs sigma-total
sTSD vs sT (pp & pp) M x,t p p’  suppressed relative to Regge for √s>22 GeV sT sT Factor of ~8 (~5) suppression at √s = 1800 (540) GeV  RENORMALIZATION MODEL KG, PLB 358, 379 (1995) 540 GeV 1800 GeV CDF Run I results √s=22 GeV Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

13 Single diffraction renormalized – (1 of/4)
KG  CORFU-2001: hep-ph/ KG  EDS 2009: 2 independent variables: t color factor gap probability sub-energy x-section Gap probability  (re)normalize to unity Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

14 Single diffraction renormalized – (2 of/4)
color factor Experimentally: KG&JM, PRD 59 (114017) 1999 QCD: Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

15 Single diffraction renormalized - (3 of/4)
set to unity  determine so Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

16 Single diffraction renormalized – (4 of/4)
 Pumplin bound obeyed at all impact parameters grows slower than se Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

17 M2 distribution: data Regge data
 ds/dM2|t=-0.05 ~ independent of s over 6 orders of magnitude! KG&JM, PRD 59 (1999) Regge data 1 Independent of s over 6 orders of magnitude in M2 M2 scaling  factorization breaks down to ensure M2 scaling Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

18 Scale so and triple-pom coupling
Pomeron flux: interpret as gap probability set to unity: determines gPPP and s0 KG, PLB 358 (1995) 379 Pomeron-proton x-section Two free parameters: so and gPPP Obtain product gPPP•soe / 2 from sSD Renormalized Pomeron flux determines so Get unique solution for gPPP gPPP=0.69 mb-1/2=1.1 GeV -1 So=3.7±1.5 GeV2 Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

19 Saturation “glueball” at ISR?
Giant glueball with f0(980) and f0(1500) superimposed, interfering destructively and manifesting as dips (???) √so See M.G.Albrow, T.D. Goughlin, J.R. Forshaw, hep-ph>arXiv: Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

20 Saturation at low Q2 and small-x
figure from a talk by Edmond Iancu Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

21 DD at CDF: comparison with MBR
gap probability x-section renormalized Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

22 Multigap cross sections, e.g. SDD
KG, hep-ph/ Gap probability Sub-energy cross section (for regions with particles) 5 independent variables color factor Same suppression as for single gap! Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

23 SDD in CDF: data vs MBR MC
Excellent agreement between data and NBR (MinBiasRockefeller) MC Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

24 Multigaps: a 4-gap x-section
Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

25 Gap survival probability
Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

26 The total inelastic pp cross section at LHC K. Goulianos
sSD and ratio of a'/e Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

27 The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel  total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

28 The total inelastic pp cross section at LHC K. Goulianos
The total x-section √sF=22 GeV SUPERBALL MODEL 98 ± 8 mb at 7 TeV 109 ±12 mb at 14 TeV Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

29 The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel  total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

30 Global fit to p±p, p±, K±p x-sections
PLB 389, 176 (1996) Regge theory eikonalized INPUT el/tot slowly rising RESULTS negligible Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

31 The total-inelastic cross section
Small extrapolation to 7 TeV sel=(sel/st)●st Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

32 st at LHC from CMG global fit
Born Eikonal LHC √s=14 TeV: 122 ± 5 mb Born, 114 ± 5 mb eikonal  error estimated from the error in e given in CMG-96 Compare with SUPERBALL s(14 TeV) = 109 ± 6 mb caveat: so=1 GeV2 was used in global fit! Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

33 The total inelastic pp cross section at LHC K. Goulianos
Secs. 4 & 5 1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel  total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

34 Visible/total inelastic cross sections
ATLAS Pre-Moriond 2011 ATLAS-CONF Feb with pythia (phojet) extrapolation Post-Moriond 2011 arXiv: v1 CMS (DIS-2011), also post-Moriond 2011 visible svtxinel=59.9±0.1(stat)±1.1(syst)±2.4(Lumi) (range due to uncertainty in MC extrapolation) Prediction: stinel=71±6 mb Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

35 The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel  total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

36 Diffraction in PYTHIA – (1 of/3)
some comments: 1/M2 dependence instead of (1/M2)1+e F-factors put “by hand” – next slide Bdd contains a term added by hand - next slide Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

37 Diffraction in PYTHIA – (2 of/3
note: 1/M2 dependence e4 factor Fudge factors: suppression at kinematic limit kill overlapping diffractive systems in dd enhance low mass region Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

38 Diffraction in PYTHIA – (3 of/3)
Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

39 Monte Carlo Strategy for the LHC
sT  from SUPERBALL model optical theorem  Im fel(t=0) dispersion relations  Re fel(t=0) sel sinel differential sSD  from RENORM use nesting of final states (FSs) for pp collisions at the IP­p sub-energy √s' sT optical theorem Im fel(t=0) dispersion relations Re fel(t=0) Strategy similar to that employed in the MBR (Minimum Bias Rockefeller) MC used in CDF based on multiplicities from: K. Goulianos, Phys. Lett. B 193 (1987) 151 pp “A new statistical description of hardonic and e+e− multiplicity distributions “ Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

40 Monte Carlo algorithm - nesting
Profile of a pp inelastic collision no gap gap gap t h'c evolve every cluster similarly ln s' final state from MC w/no-gaps Dy‘ > Dy'min Dy‘ < Dy'min generate central gap EXIT repeat until Dy' < Dy'min Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

41 The total inelastic pp cross section at LHC K. Goulianos
SUMMARY Introduction Diffractive cross sections basic: SDp, SDp, DD, DPE combined: multigap x-sections ND  no-gaps: final state from MC with no gaps this is the only final state to be tuned The total, elastic, and inelastic cross sections Monte Carlo strategy for the LHC – “nesting” derived from ND and QCD color factors Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

42 The total inelastic pp cross section at LHC K. Goulianos
BACKUP BACKUP Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

43 RISING X-SECTIONS IN PARTON MODEL
(see E. Levin, An Introduction to Pomerons,Preprint DESY ) y f Emission spacing controlled by a-strong  sT : power law rise with energy ~1/as a’ reflects the size of the emitted cluster, which is controlled by 1 /as and thereby is related to e y f Forward elastic scattering amplitude assume linear t-dependence Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

44 Dijets in gp at HERA from RENORM
K. Goulianos, POS (DIFF2006) 055 (p. 8) Factor of ~3 suppression expected at W~200 GeV (just as in pp collisions) for both direct and resolved components Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

45 Diffraction in MBR: DPE in CDF
Excellent agreement between data and MBR  low and high masses are correctly implemented Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos

46 The total inelastic pp cross section at LHC K. Goulianos
The end the end Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos


Download ppt "Predicting and measuring the total inelastic cross section at the LHC"

Similar presentations


Ads by Google