Download presentation
Presentation is loading. Please wait.
Published byAshley Chase Modified over 6 years ago
1
Predicting and measuring the total inelastic cross section at the LHC
Konstantin Goulianos The Rockefeller University Valparaiso, Chile May 19-20, 2011
2
The total inelastic pp cross section at LHC K. Goulianos
Contents 1) Introduction gaps 2) Predicting the total s: st 3) Predicting the total-elastic s: sel total-inelastic s: sinel = st-sel 4) Measuring the “visible”-inelastic s: sinelvis 5) Extrapolating to measured-inelastic s: sinelmeas 6) A Monte Carlo algorithm for the LHC - nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
3
The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps diffraction, saturation and pp cross sections at LHC 2) Predicting the total s st 3) Predicting the total-elastic s sel total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
4
The total inelastic pp cross section at LHC K. Goulianos
Why study diffraction? Two reasons: one fundamental / one practical. fundamental practical: underlying event (UE), triggers, calibrations, acceptance, … the UE affects all physics studies at LHC sT optical theorem Im fel(t=0) dispersion relations Re fel(t=0) measure sT & r-value at LHC: check for violation of dispersion relations sign for new physics Bourrely, C., Khuri, N.N., Martin, A.,Soffer, J., Wu, T.T Diffraction saturation sT NEED ROBUST MC SIMULATION OF SOFT PHYSICS Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
5
MC simulations: Pandora’s box was unlocked at the LHC!
Presently available MCs based on pre-LHC data were found to be inadequate for LHC MCs disagree in the way they handle diffraction MC tunes: the “evils of the world” were released from Pandora’s box at the LHC … but fortunately, hope remained in the box a good starting point for this talk! Pandora's box is an artifact in Greek mythology, taken from the myth of Pandora's creation around line 60 of Hesiod's Works And Days. The "box" was actually a large jar (πιθος pithos) given to Pandora (Πανδώρα) ("all-gifted"), which contained all the evils of the world. When Pandora opened the jar, the entire contents of the jar were released, but for one – hope Nikipedia Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
6
CMS: observation of Diffraction at 7 TeV
(an early example of MC inadequacies) • No single MC describes the data in their entirety Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
7
Diffractive gaps definition: gaps not exponentially suppressed
Particle production Rapidity gap h f Dh≈-ln x ln MX2 ln s No radiation Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
8
Diffractive pbar-p studies @ CDF
sT=Im fel (t=0) Elastic scattering Total cross section f f OPTICAL THEOREM GAP h h SD DD DPE SDD=SD+DD Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
9
Basic and combined diffractive processes
gap DD SD a 4-gap diffractive process Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
10
Regge theory – values of so & g?
KG-1995: PLB 358, 379 (1995) Parameters: s0, s0' and g(t) set s0‘ = s0 (universal IP ) determine s0 and gPPP – how? Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
11
A complication … Unitarity!
ds/dt ssd grows faster than st as s increases unitarity violation at high s (similarly for partial x-sections in impact parameter space) the unitarity limit is already reached at √s ~ 2 TeV Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
12
Sigma-SD vs sigma-total
sTSD vs sT (pp & pp) M x,t p p’ suppressed relative to Regge for √s>22 GeV sT sT Factor of ~8 (~5) suppression at √s = 1800 (540) GeV RENORMALIZATION MODEL KG, PLB 358, 379 (1995) 540 GeV 1800 GeV CDF Run I results √s=22 GeV Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
13
Single diffraction renormalized – (1 of/4)
KG CORFU-2001: hep-ph/ KG EDS 2009: 2 independent variables: t color factor gap probability sub-energy x-section Gap probability (re)normalize to unity Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
14
Single diffraction renormalized – (2 of/4)
color factor Experimentally: KG&JM, PRD 59 (114017) 1999 QCD: Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
15
Single diffraction renormalized - (3 of/4)
set to unity determine so Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
16
Single diffraction renormalized – (4 of/4)
Pumplin bound obeyed at all impact parameters grows slower than se Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
17
M2 distribution: data Regge data
ds/dM2|t=-0.05 ~ independent of s over 6 orders of magnitude! KG&JM, PRD 59 (1999) Regge data 1 Independent of s over 6 orders of magnitude in M2 M2 scaling factorization breaks down to ensure M2 scaling Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
18
Scale so and triple-pom coupling
Pomeron flux: interpret as gap probability set to unity: determines gPPP and s0 KG, PLB 358 (1995) 379 Pomeron-proton x-section Two free parameters: so and gPPP Obtain product gPPP•soe / 2 from sSD Renormalized Pomeron flux determines so Get unique solution for gPPP gPPP=0.69 mb-1/2=1.1 GeV -1 So=3.7±1.5 GeV2 Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
19
Saturation “glueball” at ISR?
Giant glueball with f0(980) and f0(1500) superimposed, interfering destructively and manifesting as dips (???) √so See M.G.Albrow, T.D. Goughlin, J.R. Forshaw, hep-ph>arXiv: Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
20
Saturation at low Q2 and small-x
figure from a talk by Edmond Iancu Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
21
DD at CDF: comparison with MBR
gap probability x-section renormalized Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
22
Multigap cross sections, e.g. SDD
KG, hep-ph/ Gap probability Sub-energy cross section (for regions with particles) 5 independent variables color factor Same suppression as for single gap! Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
23
SDD in CDF: data vs MBR MC
Excellent agreement between data and NBR (MinBiasRockefeller) MC Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
24
Multigaps: a 4-gap x-section
Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
25
Gap survival probability
Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
26
The total inelastic pp cross section at LHC K. Goulianos
sSD and ratio of a'/e Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
27
The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
28
The total inelastic pp cross section at LHC K. Goulianos
The total x-section √sF=22 GeV SUPERBALL MODEL 98 ± 8 mb at 7 TeV 109 ±12 mb at 14 TeV Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
29
The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
30
Global fit to p±p, p±, K±p x-sections
PLB 389, 176 (1996) Regge theory eikonalized INPUT el/tot slowly rising RESULTS negligible Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
31
The total-inelastic cross section
Small extrapolation to 7 TeV sel=(sel/st)●st Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
32
st at LHC from CMG global fit
Born Eikonal LHC √s=14 TeV: 122 ± 5 mb Born, 114 ± 5 mb eikonal error estimated from the error in e given in CMG-96 Compare with SUPERBALL s(14 TeV) = 109 ± 6 mb caveat: so=1 GeV2 was used in global fit! Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
33
The total inelastic pp cross section at LHC K. Goulianos
Secs. 4 & 5 1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
34
Visible/total inelastic cross sections
ATLAS Pre-Moriond 2011 ATLAS-CONF Feb with pythia (phojet) extrapolation Post-Moriond 2011 arXiv: v1 CMS (DIS-2011), also post-Moriond 2011 visible svtxinel=59.9±0.1(stat)±1.1(syst)±2.4(Lumi) (range due to uncertainty in MC extrapolation) Prediction: stinel=71±6 mb Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
35
The total inelastic pp cross section at LHC K. Goulianos
1) Introduction gaps 2) Predicting the total s st 3) Predicting the total-elastic s sinel total-inelastic s sinel = st-sel 4) Measuring the “visible”-inelastic s sinelvis 5) Extrapolating to measured-inelastic s sinelmeas 6) A Monte Carlo algorithm for the LHC nesting Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
36
Diffraction in PYTHIA – (1 of/3)
some comments: 1/M2 dependence instead of (1/M2)1+e F-factors put “by hand” – next slide Bdd contains a term added by hand - next slide Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
37
Diffraction in PYTHIA – (2 of/3
note: 1/M2 dependence e4 factor Fudge factors: suppression at kinematic limit kill overlapping diffractive systems in dd enhance low mass region Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
38
Diffraction in PYTHIA – (3 of/3)
Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
39
Monte Carlo Strategy for the LHC
sT from SUPERBALL model optical theorem Im fel(t=0) dispersion relations Re fel(t=0) sel sinel differential sSD from RENORM use nesting of final states (FSs) for pp collisions at the IPp sub-energy √s' sT optical theorem Im fel(t=0) dispersion relations Re fel(t=0) Strategy similar to that employed in the MBR (Minimum Bias Rockefeller) MC used in CDF based on multiplicities from: K. Goulianos, Phys. Lett. B 193 (1987) 151 pp “A new statistical description of hardonic and e+e− multiplicity distributions “ Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
40
Monte Carlo algorithm - nesting
Profile of a pp inelastic collision no gap gap gap t h'c evolve every cluster similarly ln s' final state from MC w/no-gaps Dy‘ > Dy'min Dy‘ < Dy'min generate central gap EXIT repeat until Dy' < Dy'min Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
41
The total inelastic pp cross section at LHC K. Goulianos
SUMMARY Introduction Diffractive cross sections basic: SDp, SDp, DD, DPE combined: multigap x-sections ND no-gaps: final state from MC with no gaps this is the only final state to be tuned The total, elastic, and inelastic cross sections Monte Carlo strategy for the LHC – “nesting” derived from ND and QCD color factors Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
42
The total inelastic pp cross section at LHC K. Goulianos
BACKUP BACKUP Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
43
RISING X-SECTIONS IN PARTON MODEL
(see E. Levin, An Introduction to Pomerons,Preprint DESY ) y f Emission spacing controlled by a-strong sT : power law rise with energy ~1/as a’ reflects the size of the emitted cluster, which is controlled by 1 /as and thereby is related to e y f Forward elastic scattering amplitude assume linear t-dependence Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
44
Dijets in gp at HERA from RENORM
K. Goulianos, POS (DIFF2006) 055 (p. 8) Factor of ~3 suppression expected at W~200 GeV (just as in pp collisions) for both direct and resolved components Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
45
Diffraction in MBR: DPE in CDF
Excellent agreement between data and MBR low and high masses are correctly implemented Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
46
The total inelastic pp cross section at LHC K. Goulianos
The end the end Valparaiso Symposium, May 2011 The total inelastic pp cross section at LHC K. Goulianos
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.