Download presentation
Presentation is loading. Please wait.
1
MHD of the solar corona :
Non-potentiality, complex topologies & line-tying Guillaume Aulanier ( Observatoire de Meudon, LESIA ) n° 1
2
Complexity & non-potentiality of coronal B
At the origin of all solar activity TRACE, FeXI 171A July , 12:05 UT – 14:00 UT n° 3 Yohkoh SXT, SXR 11:48 UT Among the major goals of all upcoming solar instruments But not easily measurable…
3
Activity : storage & release of magnetic energy
Magnetically driven activity Corona : b ~ ETh / EB ~ 2mP / B² < 1 Long-duration energy storage phase a few days (flares) to a few weeks (prominence eruptions) Sudden energy release & triggering of active phenomenon Alfvénic timescales ~ a few minutes n° 4
4
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion 1.) Physics of the solar corona 1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion 1.) Physics of the solar corona 2.) 3D MHD simulations 3.) 3D MHS filament models 5.) Conclusion n° 2
5
Pre-eruptive B : field-aligned currents
Conservation of momentum : dt ( r u )= 0 h dt u = – (u .s) u + (mr)–1 (sx B) x B + sP + rg tA²/t² = u²/cA² b + b L / HP In the solar corona : h Slow evolution : t ~ days >> tA ~ minutes Photospheric velocities : u ~ 0.1 km/s << cA ~ 1000 km/s « Cold » plasma : b = – 0.1 << 1 Loop sizes : L~ 10 – 100 Mm ~ Hp ~ 50 Mm n° 5 h J x B = 0 & sx B = mJ sx B = aB
6
Force-free fields : three classes
h sx B = 0 B = sY h B defined by a scalar potential Potential fields : a = 0 Linear force-free fields : a = cst h sx (sx B = a B ) s² B + a² B = 0 h Helmoltz equation has analytical solutions h sh(sx B = a B ) ( B hs)a = 0 h A field line is defined by its a value n° 6 Non-linear force-free fields : a = varying
7
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion does not count
8
Non-potentiality |a| > 0 : free magnetic energy
Potential field : sx B0 = ; sh B0 = 0 h EB0 = III ½ B0² dV ; B0 = sF ; II B1h dS = 0 Non potential field : B = B0+ B1 ; sh B1 = 0 h EB = III ½ B0² dV + III ½ B1² dV + III B0hB1 dV = EB EB III (sF) hB1 dV = EB EB III [ sh(F B1) – F (shB1) ] dV = EB EB III sh(F B1) dV = EB EB II F B1 h dS n° 7 = EB EB > EB0 h Same as Kelvin’s theorem for incompressible fluids h Potential field = lower bound of energy for a given Bzphot
9
How to store energy in the corona
Paradigm : h The Sun has no experimental-like well-defined confining boundaries h But energy stored for Dt >> tAlfvén Wavelengths L of coronal waves with C = CA ~ cst : h Energy burst during dt : L ~ CA dt ~ 10 Mm (for CA= 200 km/s & dt = 50 s) h Slow & continuous motion of a footpoint : L ~ Lcoronal loop > 10 Mm n° 8 Corona / photosphere interface (assuming equal B) : h CAcor / CAphot ~ (rphot / rcor)½ ~ (1017 cm-3 / 109 cm-3 )½ ~ 104 h Lwavelength / HP scale-height > km / km > 102
10
Energy storage : line-tying
When an Alfvén waves reaches the photosphere h At the wave-front, over 1% only of the whole wavelength h Propagation speed m by a factor 104 h Velocity amplitude m by a factor 108 h This leads to a quasi-complete reflexion back into the corona - Not only the result of strong r differences, it requires a sharp interface ! - Not always valid : e.g. steep waves & shocks, short loops, very short energy bursts Line-tying = extreme assumption = full reflexion n° 9
11
Origin of Energy : emergence & motions
Sub-photospheric emergence h Current carrying flux tube from convection zone h Flux tubes traveling the whole CZ twist necessary Slow photospheric motions h Twisting of 1 or 2 of the polarities h Shearing motions // inversion line n° 10 Energy stored in closed field lines only h Evacuation of EB at Alfvénic speeds in open fields
12
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion does not count
13
Definition of magnetic shear angle for a = constant
Bz = B° sin(kx x) exp[-(kx² – a²)1/2 z] Single Fourier mode By = a/kx B° cos(kx x) exp[-(kx² – a²)1/2 z] Bx = -(kx² – a²)1/2/kx B° cos(kx x) exp[-(kx² – a²)1/2 z] Potential vs. linear force-free field (at x=z=0) : h Bx = -(kx² – a²)1/2/kx B° & By = -a/kx B° By = 0 for potential field only h q = atan( By / Bx ) = atan( a / (kx² – a²)1/2 ) Magnetic shear x y z x y z q Bx Bx By Bz>0 Bz<0 Bz>0 Bz<0
14
Localized line-tied shear : direct & return currents
y a = 0 potential fields a = 0 potential fields a > 0 direct currents a < 0 return currents - to confine current-induced B so as to keep external B potential - Biot-Savart Sj = 0 x z y x Bz<0 Bz>0
15
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion does not count
16
Non-bipolar fields : complex topologies
2.5-D & 3D models : h Quadru-polar fields h Null point B=0 separatrix surfaces h In 3D : spine field line & fan surface z x n° 11 Karpen et al. (1998) Aulanier et al. (2000)
17
Complexity : current sheet formation
Quasi-spontaneous current sheet formation in 2.5-D : h Field line equation : Dy = S By dxz/Bxz = By S dxz/Bxz h ( Bxzhsxz) By = 0 since J x B = 0 & d/dy = 0 h On each side of separatrix : Dy equal & dxz /Bxz different Jump in By z x y x y x n° 12
18
Null point : magnetic reconnection
Basic principle in a current sheet : h dB/dt = hs² B & field line equation reconnection (Aulanier, 2004, La Recherche) h mass & energy conservations uin /CA = Lu -½ (Sweet-Parker regime) The Switch-on problem : h shearing separatrix spontaneous J sheet no flare, but heating n° 13 h Advect stronger B, increasing h , stronger driving, other physics (Petscheck, Hall…) h Or separatrix-less reconnection…
19
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion does not count
20
MHD equations in the LESIA code : zero-b
i Continuity dt r = – (u .s) r – r (s.u) [ advection ; compressible term ] i Momentum dt u = – (u .s) u + (mr)–1 (sx b) x b + n ru [ advection ; Lorentz force ; pseudo-viscous term ] i Induction dt b = – (u .s) b – b (s.u) + (b .s) u + h rb + z s(s.b) [ ideal term ; resistive diffusion ; divb cleaner ] ~ ~
21
Numerical scheme Finite differences : 4th order (5 point derivatives)
Predictor-Corrector : step dams-Bashorth & 2-step Adams-Moulton explicit time-step with CFL condition Numerical mesh : non-uniform, structured, fixed stronger concentration where b stronger Explicit diffusion terms Laplacian for b Filter adapted to the mesh of u
22
Boundary conditions : line-tied & open
bx, by, bz, ux, uy z r uz ghost cells domain | | | | | | r, bx, by, bz z ghost cells domain ux, uy, uz | | | | | | z y x z y x
23
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion
24
Twisting flux tubes : rotating sunspots
25
Twisting flux tubes : sub-Alfvénic line-tied motions
3D projection view Top view uxy/cA = 0.02 Aulanier, Démoulin & Grappin (2005)
26
Dynamics & equilibrium properties
0.2 0.4 0.6 uz/cA Equilibria z F /2p Dynamic phase Quiet phase Dynamic phase : even with sub-alfvénic boundary driving Equilibrium curves : ln(z/z0) = cst F² Why is there no kink ? Expansion L k F/L m stabilizing effect
27
Electric currents : photosphere & corona
Jz (z=0) S (J2 dz) potential return direct
28
Sigmoïd topology : sheared lines vs. twisted flux rope
Twisted B lines around vortex centers Whirled B lines on sigmoïd ends Sheared B lines on brightest parts
29
Twisted sunspots : Non-radial magnetic fields
MHD model Aulanier, Démoulin & Grappin (2005) THEMIS / MTR courtesy G. Molodij
30
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion
31
Confined flare topologies from cst-a extrapolations
Yohkoh/SXT lfff extrapolation Yohkoh/SXT H (DPSM / Pic du Midi) h a chosen to best match - large SXR loops - transverse Bphot if available h small connectivities weakly depend on a
32
Sharp mappings : quasi-separatrix layers (QSL’s)
Arch Filament System H (DPSM / Pic du Midi) SXR loops Yohkoh/SXT Démoulin et al. (1997), Schmieder et al. (1997)
33
QSL’s in four flux concentrations model
Quasi-separatrices no 3D null point Quasi-separatrices Topology / geometry : Continuous field line mapping Sharp connectivity gradients
34
Current sheet formation in QSL’s
Log Q a = J / B J = sx B Aulanier, Pariat & Démoulin (2005) Current layers & topology : J (z=0) Along the pre-existing Quasi Separatrix Layer (QSL) J sheet thinnest in Hyperbolic Flux Tube (HFT) Thickness decreases with time in HFT pas de symétrie 2.5D Quasi-separatrices
35
Formation of current sheets : where & how
In pre-existing QSL For any boundary motion Thickness of J ~ thickness of QSL Aulanier, Pariat & Démoulin. (2005)
36
Slip-running reconnection in 3D
Aulanier, Pariat, Démoulin & DeVore (2006) Field line dynamics : Coronal reconnection Alfvénic continuous footpoint slippage Origin of apparent fast motion of particle impact along flare ribbons ?
37
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion
38
Potential & linear force-free field extrapolations
Semi-analytical solutions h s² B + a² B = 0 : Helmoltz equation Fourier, Bessel functions, spherical harmonics (Nakagawa & Raadu 1972, Alissandrakis 1981, Démoulin et al. 1997, Chiu and Hilton 1977, Semel 1988, Altschuler & Newkirk 1969, Schrijver & DeRosa 2003 …) Advantages & limits : + Fast computation low computer memory & power + Based on analytical formulas low dependance on algorithm + Do not require full Bphot vector magnetograms rare & noisy + Overall topology most topological regimes are stable – Lower bounds on EB & HB poor estimation of free energy & helicity – Small-scale shear largest field lines most affected by a – a limits cannot treat highly stressed fields – a = cst no mixed sheared & potential fields & no return currents
39
Extrapolation of filament channels
08:12 UT 07:52 UT
40
Plasma support in magnetic dips
h Levitation of dense plasma H (prominence) ~ Hg no hydrostatic support e (prominence) ~ 0.01L(Bphot) Alfvén wave support requires to be localized : why ? u (plasma) ~ 0.1 cA field-aligned motions : role debated (B . s) B > 0 Bz = 0 h Full field line altitude (z) Filling of the dip : h dHa = Hg = 300 km Simulation of filament observations = 3D ensemble of all dips h
41
Topology of filaments with constant-a extrapolations
Aulanier et al. (1999) Aulanier et al. (2000) Full field lines magnetic dips Aulanier & Schmieder (2002)
42
Constant-a extrapolations vs. MHD models
Magnetic dips (IP & NP) Full field lines Full field lines magnetic dips Aulanier & Schmieder (2002) DeVore & Antiochos (2000) Full field lines Amari et al. (1999) Aulanier, DeVore & Antiochos (2006)
43
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion
44
Evolving filament barbs : observations
9-hour evolution on Sep 25, 1996 VTT/MSDP :43 UT 12:14 UT 17:04 UT 15:57 UT SoHO/MDI :40 UT 15:59 UT 17:35 UT 12:53 UT Aulanier et al. (1999)
45
Evolving filament barbs : constant-a extrapolations
9-hour evolution on Sep 25, 1996 VTT/MSDP :43 UT 15:57 UT 12:14 UT 17:04 UT Aulanier et al. (1999)
46
Comparisons with B measured in prominences
Normal Inverse Aulanier & Démoulin (2003) |B| ~ 14 G d|B|/dz ~ G/km 1 isolated region of normal polarity same as in Bommier et al. (1994)
47
– l + Magnetic dips measured in the photosphere i THEMIS Ha spine barb
constant-a model – i + THEMIS Ha THEMIS B// barb spine THEMIS observations – l + parasitic polarities THEMIS vector B Lopez Ariste, Aulanier, Schmieder & Sainz-Dalda (2006)
48
Overview 1.) Physics of the solar corona 2.) 3D MHD simulations
1.1.) Force-free fields 1.2.) Free magnetic energy 1.3.) Extended currents & magnetic shear 1.4.) Current sheet formation & magnetic reconnection 2.) 3D MHD simulations 2.1.) The LESIA code 2.2.) Twisting flux tubes & X-ray sigmoïds 2.3.) Current sheets & reconnection in quasi-separatrices 3.) 3D MHS filament models 3.1.) Extrapolation applied to multi-l observations 3.2.) Comparison with magnetic field measurements 5.) Conclusion
49
MHD models of the solar corona are VERY MUCH
Conclusions MHD models of the solar corona are VERY MUCH constrained by observations ! Many reasonable models of solar features (even those that use the right & well-known orders of magnitudes) FAIL the observational test…
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.