Presentation is loading. Please wait.

Presentation is loading. Please wait.

Lecture 3 B Maysaa ELmahi.

Similar presentations


Presentation on theme: "Lecture 3 B Maysaa ELmahi."โ€” Presentation transcript:

1 Lecture 3 B Maysaa ELmahi

2 3.3. Distribution Functions of Continuous Random Variables
Recall that a random variable X is said to be continuous if its space is either an interval or a union of intervals. Definition 3.7. Let X be a continuous random variable whose space is the set of real numbers I R. A nonnegative real valued function f : IR IR is said to be the probability density function for the continuous random variable X if it satisfies: (a) โˆ’โˆž โˆž ๐Ÿ ๐ฑ ๐๐ฑ=๐Ÿ , and (b) if A is an event, then ๐ฉ ๐€ = ๐€ ๐Ÿ ๐ฑ ๐๐ฑ

3 Example 3.10. Is the real valued function f : IR IR defined by ๐Ÿ ๐ฑ = ๐Ÿ๐ฑ โˆ’๐Ÿ ๐ข๐Ÿ ๐Ÿ<๐ฑ<๐Ÿ ๐ŸŽ ๐จ๐ญ๐ก๐ž๐ซ๐ฐ๐ข๐ฌ๐ž (a) probability density function for some random variable X? Answer: โˆ’โˆž โˆž ๐Ÿ ๐ฑ ๐๐ฑ= ๐Ÿ ๐Ÿ ๐Ÿ๐ฑ โˆ’๐Ÿ ๐๐ฑ =โˆ’๐Ÿ ๐Ÿ ๐ฑ ๐Ÿ ๐Ÿ

4 โˆ’๐Ÿ ๐Ÿ ๐Ÿ โˆ’๐Ÿ =1 Thus f is a probability density function. Example 3.11. Is the real valued function f : IR IR defined by ๐Ÿ ๐ฑ = ๐Ÿ+ ๐ฑ ๐ข๐Ÿ โˆ’๐Ÿ<๐ฑ<๐Ÿ ๐ŸŽ ๐จ๐ญ๐ก๐ž๐ซ๐ฐ๐ข๐ฌ๐ž (a) probability density function for some random variable X?

5 Answer: โˆ’โˆž โˆž ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ= โˆ’1 1 (1+ ๐‘ฅ ) ๐‘‘๐‘ฅ = โˆ’1 0 1โˆ’๐‘ฅ ๐‘‘๐‘ฅ+ 0 1 (1+๐‘ฅ) ๐‘‘๐‘ฅ = ๐‘ฅโˆ’ 1 2 ๐‘ฅ โˆ’ ๐‘ฅ ๐‘ฅ = = 3

6 Definition 3.8. Let f(x) be the probability density function of a continuous random variable X. The cumulative distribution function F(x) of X is defined as ๐… ๐ฑ =๐ ๐—โ‰ค๐ฑ = โˆ’โˆž ๐ฑ ๐Ÿ ๐ญ ๐๐ญ Theorem 3.5. If F(x) is the cumulative distribution function of a continuous random variable X, the probability density function f(x) of X is the derivative of F(x), that is ๐ ๐๐ฑ ๐… ๐ฑ =๐Ÿ(๐ฑ)

7 Theorem 3.6. Let X be a continuous random variable whose c d f is F(x). Then followings are true: ๐‘Ž . ๐‘ƒ ๐‘‹<๐‘ฅ =๐น(๐‘ฅ) ๐‘ . ๐‘ƒ ๐‘‹>๐‘ฅ =1โˆ’ ๐น(๐‘ฅ) ๐‘ . ๐‘ƒ ๐‘‹=๐‘ฅ =0 ๐‘‘ . ๐‘ƒ ๐‘Ž<๐‘‹<๐‘ = ๐น(๐‘) โˆ’ ๐น(๐‘Ž)

8 Example : (H.W) ๐‘“ ๐‘ฅ = ๐‘˜+1 ๐‘ฅ ๐‘–๐‘“ <๐‘ฅ< ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ a. what is the value of the constant k? b. What is the probability of X between the first and third? d. What is the cumulative distribution function?

9 4.2. Expected Value of Random Variables
Definition 4.2. Let X be a random variable with space ๐‘… ๐‘ฅ and probability density function f(x). The mean ๐œ‡ ๐‘ฅ of the random variable X is defined as ๐› ๐ฑ =๐„(๐ฑ) = ๐’™โˆˆ ๐‘น ๐‘ฟ ๐’™๐’‡(๐’™) ๐’Š๐’‡ X is discrete โˆ’โˆž โˆž ๐’™ ๐’‡ ๐’™ ๐’…๐’™ if X is continuous

10 Example : x 1 2 3 P(x) 1/8 3/8 what is the mean of X? Answer: = 0* 1/8+ 1* 3/8 +2* 3/8 +3 * 1/8 = / /8 + 3/8 = 12/8

11 Example : ๐’‡ ๐’™ = ๐Ÿ ๐Ÿ“ ๐’Š๐’‡ ๐Ÿ<๐’™<๐Ÿ• ๐ŸŽ ๐’๐’•๐’‰๐’†๐’“๐’˜๐’Š๐’”๐’† Answer: = 2 7 ๐‘ฅ 1 5 ๐‘‘๐‘ฅ = ๐‘ฅ = โˆ’4 = = 9 2

12 4.3. Variance of Random Variables
Theorem 4.1 Let X be a random variable with p d f f(x). If a and b are any two real numbers, then ๐š. ๐„(๐š๐ฑ+๐› ) = a ๐„ ๐ฑ +๐› b. ๐„(๐š๐ฑ) = ๐š ๐„(๐ฑ) c. ๐„(๐š) = ๐š 4.3. Variance of Random Variables Definition 4.4. Let X be a random variable with mean ๐œ‡ ๐‘ฅ . The variance of X, denoted by Var(X), is defined as

13 ๐•๐š๐ซ ๐ฑ = ( ๐„ ๐ฑ โˆ’ ๐› ๐ฑ ) ๐Ÿ ๐›” ๐Ÿ ๐ฑ =๐„ ๐ฑ ๐Ÿ โˆ’ (๐› ๐Ÿ ๐ฑ ) Example : ๐‘“ ๐‘ฅ = 2(๐‘ฅโˆ’1) ๐‘–๐‘“ <๐‘ฅ< ๐‘œ๐‘กโ„Ž๐‘’๐‘Ÿ๐‘ค๐‘–๐‘ ๐‘’ a. what is the variance of X? Answer:

14 ๐œ‡ ๐‘ฅ =๐ธ ๐‘ฅ = โˆ’โˆž โˆž ๐‘ฅ ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ= 1 2 ๐‘ฅ 2(๐‘ฅโˆ’1)๐‘‘๐‘ฅ
= (๐‘ฅ 2 โˆ’๐‘ฅ)๐‘‘๐‘ฅ = 2 ๐‘ฅ โˆ’ ๐‘ฅ = โˆ’ โˆ’ โˆ’ = 2(( ( ) ) =2โˆ— =

15 ๐ธ ๐‘ฅ 2 = โˆ’โˆž โˆž ๐‘ฅ 2 ๐‘“ ๐‘ฅ ๐‘‘๐‘ฅ= ๐‘ฅ 2 2(๐‘ฅโˆ’1)๐‘‘๐‘ฅ = (๐‘ฅ 3 โˆ’ (๐‘ฅ 2 )๐‘‘๐‘ฅ = 2 ๐‘ฅ โˆ’ ๐‘ฅ = โˆ’ โˆ’ โˆ’ = 2(( ( ) ) = 2(( ) ) = 17/6

16 Thus, the variance of X is given by
๐›” ๐Ÿ ๐ฑ =๐„ ๐ฑ ๐Ÿ โˆ’ (๐› ๐Ÿ ๐ฑ ) = โ€“ = Remark: Var (๐‘Ž๐‘ฅ+๐‘ ) = ๐‘Ž 2 ๐‘‰๐‘Ž๐‘Ÿ ๐‘ฅ ๐‘‰๐‘Ž๐‘Ÿ (๐‘Ž ๐‘ฅ ) = ๐‘Ž 2 ๐‘‰๐‘Ž๐‘Ÿ ๐‘ฅ ๐‘‰๐‘Ž๐‘Ÿ (๐‘Ž) =0

17 4.1. Moments of Random Variables
Definition 4.1. The nth moment about the origin of a random variable X, as denoted by E( ๐‘ฅ ๐‘› ), is defined to be ๐„ ๐ฑ ๐ง = ๐ฑโˆˆ ๐‘ ๐— ๐ฑ ๐ง ๐Ÿ(๐ฑ) ๐ข๐Ÿ X is discrete โˆ’โˆž โˆž ๐ฑ ๐ง ๐Ÿ ๐ฑ ๐๐ฑ if X is continuous

18 for n = 0, 1, 2, 3,. , provided the right side converges absolutely
for n = 0, 1, 2, 3, ...., provided the right side converges absolutely. If n = 1, then E(X) is called the first moment about the origin. If n = 2, then E( ๐‘ฅ 2 ) is called the second moment of X about the origin. 4.5. Moment Generating Functions Definition 4.5. Let X be a random variable whose probability density function is f(x). A real valued function M : IR IR defined by ๐‘ด ๐’• =๐‘ฌ( ๐’† ๐’•๐’™ ) is called the moment generating function of X if this expected value exists for all t in the interval โˆ’h < t < h for some h > 0.

19 Using the definition of expected value of a random variable, we obtain
the explicit representation for M(t) as ๐Œ(๐ญ) = ๐ฑโˆˆ ๐‘ ๐— ๐ž ๐ญ๐ฑ ๐Ÿ(๐ฑ) ๐ข๐Ÿ X is discrete โˆ’โˆž โˆž ๐ž ๐ญ๐ฑ ๐Ÿ ๐ฑ ๐๐ฑ if X is continuous


Download ppt "Lecture 3 B Maysaa ELmahi."

Similar presentations


Ads by Google