Presentation is loading. Please wait.

Presentation is loading. Please wait.

IGCSE FM Trigonometry II

Similar presentations


Presentation on theme: "IGCSE FM Trigonometry II"β€” Presentation transcript:

1 IGCSE FM Trigonometry II
Dr J Frost Objectives: (from the specification) Last modified: 21st April 2016

2 What makes this topic Further Maths-ey?
Technically this chapter requires no new knowledge since GCSE. Harder questions to do with sine/cosine rule (e.g. proofs or algebraic/surd sides) Harder 3D Pythagoras (e.g. angles between planes and between lines and planes)

3 Basic Trigonometry Recap
June 2012 Paper 2 Q10 ? You always do sin/cos/tan of the angle, not the 7 𝑦 . sin 28Β° = 7 𝑦 𝑦= 7 sin 28Β° =14.91Β° ? Always check your answer looks sensible. We expect 𝑦 to be a lot longer than 7 because the angle is shallow.

4 More Examples ? ? ? 1 2 𝐴 1 4 2 +10 𝐡 πœƒ 3 30Β° π‘₯ 𝐢 𝐷 Find π‘₯.
𝐡 πœƒ 3 30Β° π‘₯ 𝐢 𝐷 Find π‘₯. 𝐜𝐨𝐬 πŸ‘πŸŽΒ° = 𝒙 πŸ’ 𝟐 +𝟏𝟎 πŸ‘ 𝟐 = 𝒙 πŸ’ 𝟐 +𝟏𝟎 πŸ‘ πŸ’ 𝟐 +𝟏𝟎 =πŸπ’™ 𝒙= πŸ‘ πŸ’ 𝟐 +𝟏𝟎 𝟐 𝒙= πŸ’ πŸ” +𝟏𝟎 πŸ‘ 𝟐 𝒙=𝟐 πŸ” +πŸ“ πŸ‘ Determine cos πœƒ 𝐜𝐨𝐬 𝜽 = 𝟏 πŸ‘ Hence determine the length 𝐡𝐢. Using triangle 𝐴𝐢𝐷: 𝐜𝐨𝐬 𝜽 = πŸ‘ 𝑨π‘ͺ 𝟏 πŸ‘ = πŸ‘ 𝑨π‘ͺ 𝑨π‘ͺ=πŸ— 𝑩π‘ͺ=πŸ—βˆ’πŸ=πŸ– ? ? If a fraction on each side (and nothing else), cross multiply. ?

5 Test Your Understanding
June 2013 Paper 1 Q3 2 𝐴𝐡𝐢 is a right-angled triangle. 𝑃 is a point on 𝐴𝐡. tan π‘₯ = 2 3 2 2 βˆ’1 45Β° π‘₯ Find π‘₯. 𝐬𝐒𝐧 πŸ’πŸ“Β° = 𝒙 𝟐 𝟐 βˆ’πŸ 𝟏 𝟐 = 𝒙 𝟐 𝟐 βˆ’πŸ 𝟐 𝟐 βˆ’πŸ=𝒙 𝟐 𝒙= 𝟐 𝟐 βˆ’πŸ 𝟐 𝒙= πŸ’βˆ’ 𝟐 𝟐 ? a) Work out the length of 𝐡𝐢. 𝐭𝐚𝐧 𝒙 = πŸ’ 𝑩π‘ͺ 𝟐 πŸ‘ = πŸ’ 𝑩π‘ͺ β†’ πŸπ‘©π‘ͺ=𝟏𝟐, 𝑩π‘ͺ=πŸ” b) Work out the length of 𝐴𝑃. Using triangle 𝑨𝑩π‘ͺ: 𝐭𝐚𝐧 𝒙 = 𝑩π‘ͺ 𝑨𝑩 𝟐 πŸ‘ = πŸ” 𝑨𝑩 β†’ πŸπ‘¨π‘©=πŸπŸ– β†’ 𝑨𝑩=πŸ— 𝑨𝑷=πŸ—βˆ’πŸ’=πŸ“π’„π’Ž ? Rationalise denominator by multiplying top and bottom by 2 . ?

6 Exercise 1 ? ? ? ? ? ? ? NO CALCULATORS 3 Show that 𝑝 is an integer. 4
Find the exact value of π‘₯. 2 1 𝒑=πŸ” ? π‘₯ 𝑝 π‘₯ 5 2 45Β° π‘₯ 30Β° 45Β° 60Β° 𝒙=πŸ“ ? 8 + 2 𝒙=πŸ“+ πŸ‘ ? 𝒙=πŸ‘+𝟐 πŸ‘ ? 𝐢 4 𝐡 7 Determine the area of triangle 𝐴𝐡𝐢, giving your answer in the form 𝑝+π‘ž 3 . Work out the area of trapezium 𝑃𝑄𝑅𝑆 5 6 𝑃 12 𝑄 3+ 3 7 π‘₯ 30Β° [AQA Mock Papers] a) Using Δ𝐴𝐡𝐢, find tan π‘₯ . = 𝟏 πŸ‘ b) Work out the length of 𝑃𝑄 = πŸ• πŸ‘ 𝐴 ? 𝒑=πŸ—+πŸ” πŸ‘ ? ?

7 3D Pythagoras The key here is identify some 2D triangle β€˜floating’ in 3D space. You will usually need to use Pythagoras twice. Find the length of diagonal connecting two opposite corners of a unit cube. 3 Determine the height of this pyramid. ? 2 ? 2 3 1 2 2 1 2 1 We obtained the 2 by using Pythagoras on the base of the cube. 2

8 Test Your Understanding
AQA Mock Set 4 Paper 2 AQA Mock Set 1 Paper 2 A pyramid has a square base 𝐴𝐡𝐢𝐷 of sides 6cm. Vertex 𝑉, is directly above the centre of the base, 𝑋. Work out the height 𝑉𝑋 of the pyramid. 𝑿𝑨= 𝟏 𝟐 πŸ” 𝟐 + πŸ” 𝟐 =πŸ‘ 𝟐 𝑽𝑿= 𝟏𝟎 𝟐 βˆ’ πŸ‘ 𝟐 𝟐 = πŸπŸŽπŸŽβˆ’πŸπŸ– = πŸ–πŸ 2 The diagram shows a vertical mast, 𝐴𝐡, 12 metres high. Points 𝐡, 𝐢, 𝐷 are on a horizontal plane. Point 𝐢 is due West of 𝐡. Calculate 𝐢𝐷 Calculate the bearing of 𝐷 from 𝐢 to the nearest degree 1 ? a) 𝑩π‘ͺ= 𝟏𝟐 𝐭𝐚𝐧 πŸ‘πŸ“ =πŸπŸ•.πŸπŸ‘πŸ•πŸ•πŸ•πŸ” 𝑩𝑫= 𝟏𝟐 𝐭𝐚𝐧 πŸπŸ‘Β° =πŸπŸ–.πŸπŸ•πŸŽπŸπŸπŸ– π‘ͺ𝑫= πŸπŸ•.πŸβ€¦ 𝟐 + πŸπŸ–.πŸβ€¦ 𝟐 =πŸ‘πŸ‘.πŸŽπŸ”π’Ž b) πŸ—πŸŽΒ°+ 𝐭𝐚𝐧 βˆ’πŸ πŸπŸ–.πŸπŸ• πŸπŸ•.πŸπŸ’ =πŸπŸ’πŸ—Β° ? ?

9 Angles between lines and planes
A plane is: A flat 2D surface (not necessary horizontal). ? When we want to find the angle between a line and a plane, use the β€œdrop method” – imagine the line is a pen which you drop onto the plane. The angle you want is between the original and dropped lines. πœƒ Click for Bromanimation

10 Angles between two planes
To find angle between two planes: Use β€˜line of greatest slope’* on one plane, before again β€˜dropping’ down. * i.e. what direction would be ball roll down? πœƒ line of greatest slope ? 𝐡 Example: Find the angle between the plane 𝐴𝐡𝐢𝐷 and the horizontal plane. 𝜽= 𝐬𝐒𝐧 βˆ’πŸ πŸ‘ πŸ” =πŸ‘πŸŽΒ° 6π‘π‘š 𝐢 𝜽 3π‘π‘š line of greatest slope ? 𝐴 𝐷

11 Further Example 2 2 2 2 1 𝐸 𝐷 𝐢 𝑂 ? 𝐴 𝐡 𝐸 ? Suitable diagram
Find the angle between the planes 𝐡𝐢𝐸 and 𝐴𝐡𝐢𝐷. 2 2 We earlier used Pythagoras to establish the height of the pyramid. Why would it be wrong to use the angle βˆ πΈπΆπ‘‚? 𝑬π‘ͺ is not the line of greatest slope. 𝐷 𝐢 𝑂 2 ? 𝐴 2 𝐡 𝐸 ? Suitable diagram ? Solution 2 𝐷 𝐢 πœƒ= tan βˆ’ =54.7Β° πœƒ 1 𝑂 From 𝐸 a ball would roll down to the midpoint of 𝐡𝐢. 𝐴 𝐡

12 Test Your Understanding
Jan 2013 Paper 2 Q23 The diagram shows a cuboid 𝐴𝐡𝐢𝐷𝑃𝑄𝑅𝑆 and a pyramid 𝑃𝑄𝑅𝑆𝑉. 𝑉 is directly above the centre 𝑋 of 𝐴𝐡𝐢𝐷. a) Work out the angle between the line 𝑉𝐴 and the plane 𝐴𝐡𝐢𝐷. (Reminder: β€˜Drop’ 𝑉𝐴 onto the plane) 𝑨𝑿= 𝟏 𝟐 πŸ” 𝟐 + 𝟏𝟎 𝟐 = πŸ‘πŸ’ βˆ π‘½π‘¨π‘Ώ= 𝐭𝐚𝐧 βˆ’πŸ πŸ“ πŸ‘πŸ’ =πŸ’πŸŽ.πŸ”Β° b) Work out the angle between the planes 𝑉𝑄𝑅 and 𝑃𝑄𝑅𝑆. 𝐭𝐚𝐧 βˆ’πŸ 𝟐 πŸ“ =𝟐𝟏.πŸ–Β° ? ?

13 Exercise 2 ? ? ? ? 𝐡 8 𝐢 8 𝐴 A cube has sides 8cm. Find: 1 2
a) The length 𝐴𝐡. πŸ– πŸ‘ b) The angle between 𝐴𝐡 and the horizontal plane. πŸ‘πŸ“.πŸ‘Β° 1 2 A radio tower 150m tall has two support cables running 300m due East and some distance due South, anchored at 𝐴 and 𝐡. The angle of inclination to the horizontal of the latter cable is 50Β° as indicated. ? ? 𝐡 8 150π‘š 𝐢 𝐴 300π‘š 50Β° 8 𝐴 𝐡 a) Find the angle between the cable attached to 𝐴 and the horizontal plane. 𝐭𝐚𝐧 βˆ’πŸ πŸπŸ“πŸŽ πŸ‘πŸŽπŸŽ =πŸπŸ”.πŸ”Β° b) Find the distance between 𝐴 and 𝐡 m ? ?

14 Exercise 2 𝐸 𝐷 𝐢 𝑀 𝑋 𝐴 𝐡 ? ? ? ? 𝐼 𝐽 20cm 𝐺 𝐻 12π‘š 𝐹 𝐸 8π‘š 𝐷 24cm 𝐢 7π‘š 𝐴
24π‘š 7π‘š 𝐸 3 4 20cm 𝐷 𝐢 𝑀 𝑋 24cm 𝐴 24cm 𝐡 A school buys a set of new β€˜extra comfort’ chairs with its seats pyramid in shape. 𝑋 is at the centre of the base of the pyramid, and 𝑀 is the midpoint of 𝐡𝐢. By considering the triangle 𝐸𝐡𝐢, find the length 𝐸𝑀. 16cm Hence determine the angle between the triangle 𝐸𝐡𝐢 and the plane 𝐴𝐡𝐢𝐷. 𝐜𝐨𝐬 βˆ’πŸ 𝟏𝟐 πŸπŸ” =πŸ’πŸ.πŸ’Β° Frost Manor is as pictured, with 𝐸𝐹𝐺𝐻 horizontally level. a) Find the angle between the line 𝐴𝐺 and the plane 𝐴𝐡𝐢𝐷. 𝐭𝐚𝐧 βˆ’πŸ πŸ– πŸπŸ“ =πŸπŸ•.πŸ•Β° b) Find the angle between the planes 𝐹𝐺𝐼𝐽 and 𝐸𝐹𝐺𝐻. 𝐭𝐚𝐧 βˆ’πŸ πŸ’ 𝟏𝟐 =πŸπŸ–.πŸ’Β° ? ? ? ?

15 Exercise 2 5 [June 2013 Paper 2] 𝐴𝐡𝐢𝐷𝐸𝐹𝐺𝐻 is a cuboid. 𝑀 is the midpoint of 𝐻𝐺. 𝑁 is the midpoint of 𝐷𝐢. Show that 𝐡𝑁= 7.5m Work out the angle between the line 𝑀𝐡 and the plane 𝐴𝐡𝐢𝐷. 𝒕𝒂𝒏 βˆ’πŸ πŸ‘ πŸ•.πŸ“ =𝟐𝟏.πŸ–Β° Work out the obtuse angle between the planes 𝑀𝑁𝐡 and 𝐢𝐷𝐻𝐺. πŸπŸ–πŸŽβˆ’ 𝐭𝐚𝐧 βˆ’πŸ πŸ’.πŸ“ πŸ” =πŸπŸ’πŸ‘.𝟏° 6 [Set 3 Paper 2] The diagram shows part of a skate ramp, modelled as a triangular prism. 𝐴𝐡𝐢𝐷 represents horizontal ground. The vertical rise of the ramp, 𝐢𝐹, is 7 feet. The distance 𝐡𝐢=24 feet. ? ? You are given that π‘”π‘Ÿπ‘Žπ‘‘π‘–π‘’π‘›π‘‘= π‘£π‘’π‘Ÿπ‘‘π‘–π‘π‘Žπ‘™ π‘Ÿπ‘–π‘ π‘’ β„Žπ‘œπ‘Ÿπ‘–π‘§π‘œπ‘›π‘‘π‘Žπ‘™ π‘‘π‘–π‘ π‘‘π‘Žπ‘›π‘π‘’ a) The gradient of 𝐡𝐹 is twice the gradient of 𝐴𝐹. Write down the distance 𝐴𝐢 b) Greg skates down the ramp along 𝐹𝐡. How much further would he travel if he had skated along 𝐹𝐴. 𝑭𝑩=πŸπŸ“ 𝑨𝑭=πŸ’πŸ–.πŸ“πŸ πŸ’πŸ–.πŸ“πŸβˆ’πŸπŸ“=πŸπŸ‘.πŸ“πŸ ? ?

16 Exercise 2 ? ? ? 𝐼 2 2 𝐺 3 𝐻 5π‘š 𝐹 3 𝐸 2π‘š 𝐷 4 𝐢 4 4π‘š 𝐴 8π‘š 𝐡 7 8
A β€˜truncated pyramid’ is formed by slicing off the top of a square-based pyramid, as shown. The top and bottom are two squares of sides 2 and 4 respectively and the slope height 3. Find the angle between the sloped faces with the bottom face. 𝐜𝐨𝐬 βˆ’πŸ 𝟏 πŸ– =πŸ”πŸ—.πŸ‘Β° a) Determine the angle between the line 𝐴𝐼 and the plane 𝐴𝐡𝐢𝐷. 𝐭𝐚𝐧 βˆ’πŸ πŸ“ 𝟐 πŸ“ =πŸ’πŸ–.𝟐° b) Determine the angle between the planes 𝐹𝐻𝐼 and 𝐸𝐹𝐺𝐻. 𝐭𝐚𝐧 βˆ’πŸ πŸ‘ πŸ’ =πŸ‘πŸ”.πŸ—Β° ? ? ?

17 Exercise 2 𝐢 N 5 𝐷 4 𝐡 3 𝑋 𝐴 a) 𝑋 is a point on 𝐴𝐡 such that 𝑋𝐢 is the line of greatest slope on the triangle 𝐴𝐡𝐢. Determine the length of 𝐴𝑋. By Pythagoras 𝑨π‘ͺ= πŸ‘πŸ’ , 𝑩π‘ͺ= πŸ’πŸ and 𝑨𝑩=πŸ“. If 𝑨𝑿=𝒙, then 𝑿𝑩=πŸ“βˆ’π’™. Then π‘ͺ𝑿 can be expressed in two different ways: π‘ͺ𝑿= πŸ‘πŸ’βˆ’ 𝒙 𝟐 = πŸ’πŸβˆ’ πŸ“βˆ’π’™ 𝟐 Solving: π‘ͺ𝑿= πŸ’ πŸ“ b) Hence determine 𝐷𝑋. πŸ‘πŸ’βˆ’ 𝟎.πŸ– 𝟐 = πŸ–πŸ‘πŸ’ πŸ“ =πŸ“.πŸ•πŸ•πŸ” c) Hence find the angle between the planes 𝐴𝐡𝐢 and 𝐴𝐡𝐷. 𝐭𝐚𝐧 βˆ’πŸ πŸ“ πŸ“.πŸ•πŸ•πŸ” =πŸ’πŸŽ.πŸ–πŸ– ? ? ?

18 Sine/Cosine Rule Recap
65Β° 8 10 π‘₯ 𝛼 40Β° 45Β° 5 ? Sine rule angle, but this time angle unknown, so put as numerator. 𝐬𝐒𝐧 𝜢 𝟏𝟎 = 𝐬𝐒𝐧 πŸ’πŸŽ πŸ– 𝐬𝐒𝐧 𝜢 = 𝟏𝟎 π’”π’Šπ’ πŸ’πŸŽ πŸ– 𝜢=πŸ“πŸ‘.πŸ“Β° We have two angle-side pairs involved, so use sine rule. 𝒙 𝐬𝐒𝐧 πŸ’πŸ“ = πŸ“ 𝐬𝐒𝐧 πŸ”πŸ“ 𝒙= πŸ“ π¬π’π§πŸ”πŸ“ Γ— 𝐬𝐒𝐧 πŸ’πŸ“ 𝒙=πŸ‘.πŸ—πŸŽ ?

19 Sine/Cosine Rule Recap
π‘₯ 5 𝛼 1 2.5 40Β° 6 2 All three sides involved (and unknown side opposite known angle), so cosine rule. 𝒙 𝟐 = πŸ“ 𝟐 + πŸ” 𝟐 βˆ’ πŸΓ—πŸ“Γ—πŸ”Γ— 𝐜𝐨𝐬 πŸ’πŸŽ 𝒙=πŸ‘.πŸ–πŸ– ? Again, all three sides involved so cosine rule. 𝟐 𝟐 = 𝟏 𝟐 + 𝟐.πŸ“ 𝟐 βˆ’ πŸΓ—πŸΓ—πŸ.πŸ“Γ— 𝐜𝐨𝐬 𝜢 πŸ’=πŸ•.πŸπŸ“βˆ’πŸ“ 𝐜𝐨𝐬 𝜢 πŸ“ 𝐜𝐨𝐬 𝜢 =πŸ•.πŸπŸ“βˆ’πŸ’ 𝐜𝐨𝐬 𝜢 = πŸ‘.πŸπŸ“ πŸ“ 𝜢=πŸ’πŸ—.πŸ“Β° ?

20 Where C is the angle wedged between two sides a and b.
Area of Non Right-Angled Triangles Rrecap 3cm Area = 0.5 x 3 x 7 x sin(59) = 9.00cm2 ? 59Β° 7cm ! Area = 1 2 π‘Ž 𝑏 sin 𝐢 Where C is the angle wedged between two sides a and b.

21 Test Your Understanding
90π‘š Q1 Q2 Q3 4.6 27 130Β° 15 80Β° πœƒ 11 40Β° 60π‘š π‘₯ 12 π‘₯=41.37 b) π΄π‘Ÿπ‘’π‘Ž=483.63 ? π‘ƒπ‘’π‘Ÿπ‘–π‘šπ‘’π‘‘π‘’π‘Ÿ =286.5π‘š πœƒ=122.8Β° ? ? ? 7 5 Q5 Q6 Q4 𝑧 7 30Β° 61Β° 11 𝛼 𝛼 20Β° π‘₯ 18 11 π‘₯=7.89 π΄π‘Ÿπ‘’π‘Ž=17.25 ? 𝛼=147.5Β° Your calculator will say 32.5Β°, but it’s clearly an obtuse angle. Remember that sin π‘₯ = sin 180βˆ’π‘₯ ? 𝛼=17.79Β° 𝑧=26.67 π΄π‘Ÿπ‘’π‘Ž=73.33 ? ? ? ? (Hint: cosine rule is not good here as π‘₯ is not opposite known angle)

22 Where it gets more Further Maths-ey…
You will frequently encounter either algebraic or surd sides. The approach is exactly the same as before. 2π‘₯+1 2 = π‘₯ π‘₯+4 2 βˆ’2 2π‘₯+4 π‘₯+3 cos π‘₯ 2 +4π‘₯+1= π‘₯ 2 +6π‘₯+9+4 π‘₯ 2 +16π‘₯+16βˆ’2 2 π‘₯ 2 +10π‘₯ π‘₯ 2 +4π‘₯+1= π‘₯ 2 +6π‘₯+9+4 π‘₯ 2 +16π‘₯+16βˆ’2 π‘₯ 2 βˆ’10π‘₯βˆ’12 4 π‘₯ 2 +4π‘₯+1=3 π‘₯ 2 +12π‘₯+13 π‘₯ 2 βˆ’8π‘₯βˆ’12=0 π‘₯= 8Β± 64βˆ’ 4Γ—1Γ—βˆ’ =4Β±2 7 (But π‘₯=4βˆ’2 7 would lead to side of 2π‘₯+1 being negative) ?

23 Another Example ? Jan 2013 Paper 2 Q20
18= 1 2 ×𝑀×2𝑀× sin = 1 2 𝑀 β†’ 𝑀=6 𝑦 2 = βˆ’ 2Γ—6Γ—12Γ— cos 30 𝑦=7.44 π‘π‘š Use π΄π‘Ÿπ‘’π‘Ž= 1 2 π‘Žπ‘ sin 𝐢 Can now use cosine rule.

24 Test Your Understanding
AQA Set 4 Paper 1 Frost Special π‘₯ 6 2π‘₯ 60Β° 𝑝 2 = π‘š π‘š 2 βˆ’ 2Γ—π‘šΓ—3π‘šΓ— cos 60 = π‘š 2 +9 π‘š 2 βˆ’3 π‘š 2 =7 π‘š 2 𝑝=π‘š 7 ? π‘₯+3 Determine the value of π‘₯. 𝒙 πŸ” 𝟐 = πŸπ’™ 𝟐 + 𝒙+πŸ‘ 𝟐 βˆ’πŸ πŸπ’™ 𝒙+πŸ‘ 𝐜𝐨𝐬 πŸ”πŸŽ πŸ” 𝒙 𝟐 =πŸ’ 𝒙 𝟐 + 𝒙 𝟐 +πŸ”π’™+πŸ—βˆ’πŸ 𝒙 𝟐 βˆ’πŸ”π’™ πŸ‘ 𝒙 𝟐 βˆ’πŸ—=𝟎 𝒙 𝟐 βˆ’πŸ‘=𝟎 β†’ 𝒙= πŸ‘ ?

25 Exercise 3 ? ? ? [June 2012 Paper 2 Q13] Work out angle π‘₯. 1 3 π‘₯+1 π‘₯
60Β° 2π‘₯βˆ’1 ? 𝒙=𝟏𝟎𝟐.πŸ”πŸ’Β° Use the cosine rule to determine π‘₯. ? 𝒙+𝟏 𝟐 = 𝒙 𝟐 + πŸπ’™βˆ’πŸ 𝟐 βˆ’πŸπ’™ πŸπ’™βˆ’πŸ 𝐜𝐨𝐬 πŸ”πŸŽ … 𝒙= πŸ“ 𝟐 2 Here is a triangle. Work out πœƒ. ? 𝜽=πŸ‘πŸŽΒ°

26 Exercise 3 4 5 3π‘₯ 2 πœƒ 𝑦 45Β° 30Β° 3 2π‘₯ The angle πœƒ is obtuse. Determine πœƒ. 𝐬𝐒𝐧 𝜽 πŸ‘ = 𝐬𝐒𝐧 πŸ’πŸ“ 𝟐 𝐬𝐒𝐧 𝜽 = πŸ‘ 𝟐 𝜽=πŸπŸ–πŸŽβˆ’πŸ”πŸŽΒ°=𝟏𝟐𝟎° (Remember that 𝐬𝐒𝐧 𝒙 = 𝐬𝐒𝐧 πŸπŸ–πŸŽβˆ’π’™ ) Given that the area of the triangle is 24cm2. Find the values of π‘₯ and 𝑦. 𝟏 𝟐 Γ—πŸ‘π’™Γ—πŸπ’™Γ— 𝐬𝐒𝐧 πŸ‘πŸŽ =πŸπŸ’ πŸ‘ 𝟐 𝒙 𝟐 =πŸπŸ’ 𝒙 𝟐 =πŸ‘πŸ” β†’ 𝒙=πŸ” π’š=πŸ—.πŸ”πŸ— π’„π’Ž ? ?

27 Exercise 3 [June 2012 Paper 1] Triangle ABC has an obtuse angle at C. Given that sin 𝐴 = 1 4 , use triangle 𝐴𝐡𝐢 to show that angle 𝐡=60Β° 6 ? 𝐬𝐒𝐧 𝑩 πŸ’ πŸ‘ βˆ’πŸ” = 𝐬𝐒𝐧 𝑨 πŸβˆ’ πŸ‘ = 𝟎.πŸπŸ“ πŸβˆ’ πŸ‘ 𝐬𝐒𝐧 𝑩 = 𝟏 πŸ’ πŸ’ πŸ‘ βˆ’πŸ” πŸβˆ’ πŸ‘ = 𝟏 πŸ’ πŸ’ πŸ‘ βˆ’πŸ” 𝟐+ πŸ‘ πŸβˆ’ πŸ‘ 𝟐+ πŸ‘ = 𝟏 πŸ’ 𝟐 πŸ‘ 𝟏 = πŸ‘ 𝟐 𝑩= 𝐬𝐒𝐧 βˆ’πŸ πŸ‘ 𝟐 =πŸ”πŸŽΒ°

28 Exercise 3 7 ? June 2013 Paper 2 Q23 In triangle 𝐴𝐡𝐢, 𝐴𝑃 bisects angle 𝐡𝐴𝐢. Use the sine rule in triangles 𝐴𝐡𝑃 and 𝐴𝐢𝑃 to prove that 𝐴𝐡 𝐴𝐢 = 𝐡𝑃 𝑃𝐢 .


Download ppt "IGCSE FM Trigonometry II"

Similar presentations


Ads by Google