Download presentation
Presentation is loading. Please wait.
Published byMariah Haynes Modified over 6 years ago
1
25 an = 記住:a zero Index Concepts 2 2 2 2 2 a a a … a
(5 times) index/exponent an = (n times) a a a … a base “a to the power n” 記住:a zero
2
Law of positive integral indices
Class Activity 1 23 x 24 = (2 x 2 x 2) x (2 x 2 x 2 x 2) = 23+4 = 27 a2 x a3 = (a x a) x (a x a x a) = a2+3 = a5 b5 x b4 = (b x b x b x b x b) x (b x b x b x b) = b5+4 = b9 am an = a a … a (m times) (n times) a a … a (m x n times) = am an = am + n am an law 1
3
Class Activity 2
4
= , where m > n and a 0 , where m < n and a 0 Law 2
5
(a) a7.a3 = a7+3 = a10 an.a3 = an+3 (b) a7 a9-2 = (c) (d)
EXAMPLE 1 – Simplify the following expressions (a) a7.a3 = a7+3 = a10 an.a3 = an+3 (b) a7 a9-2 = (c) (d)
6
a (23)2 = (2 2 2) (2 2 2) = 232= 26 (a4)3 =
Class Activity (23)2 = (2 2 2) (2 2 2) = 232= 26 (a4)3 = (a a a a) (a a a a) = a43= a12 (b3)5= (bbb) b35= a15 (bbb)= n times of am (aa…a) (aa…a) …… nm times of a (aa…a) m n a Law 3
7
(a5)2= a52= a10 (an)3= an3= a3n (a4)m= a4m= a4m (a) (b) (c) x12
Example 2- Simplify the following expressions (a5)2= a52= a10 (a) (an)3= (b) an3= a3n (a4)m= a4m= (c) a4m Classwork- Simplify the following expressions x12 (x4)3= x43= (1) x6n (xn)6= xn6= (2) x5m (x5)m= x5m= (3)
8
(2 3) (2 3) (2 3) (2 3) (2 3)4= =(2 2 2 2)
Class Activity (2 3) (2 3) (2 3) (2 3) (2 3)4= =(2 2 2 2) (3 3 3 3) =24 34 (3 5)5= (3 5) (3 5) (3 5) (3 5) (3 5) (5 5 5 5 5) =(3 3 3 3 3) =35 55 (ab)3= (a b) (a b) (a b) =(a a a) (b b b) =a3 b3
9
(a b) (a b)…. (a b) (ab)m= (ab)m= (a a … a)
m times of ab (ab)m= (a a … a) (b b … b) m times of a m times of b (ab)m= am bn Law 4
10
4 4 = = = 4 5 5 = = = 5 3 3 = = = 3 (n times of ) Law 5 (where b 0)
11
EXAMPLE 3: Simplify the following expressions
4 4 4 = (b) = 4 2 2 3 3 2 3 6 (c) 3 = = = 3 3 3 Classwork 1.3 3 (2) = (2x)5= 25x5= 32x5 (1) 2 (3) = 5 2
12
EXAMPLE 4: Simplify the following expressions
(b) (c)
13
Classwork 1.4 1. 2. 40 3.
14
(1b) a2.a3.a4=a2+3+4=a9 (2b) (3b) (x7)3 =x73 =x21 (4b)
Exercise 1A Level 1 (1b) a2.a3.a4=a2+3+4=a9 (2b) (3b) (x7)3 =x73 =x21 (4b) (4a2)3 =43. (a2)3=64. a23 =64. a6
15
(5b) 23.(b2)3. 42(b3)2 (6b) (2b2)3(4b3)2= =23.(b2)3. 42(b3)2
Exercise 1A Level 2 (5b) 23.(b2)3. 42(b3)2 (6b) (2b2)3(4b3)2= =23.(b2)3. 42(b3)2 =8. b6. 16b6 =8. 16 b6. b6 =128 b6+6 =128 b12
16
(7b) (8b)
17
(9b) (10b)
18
Mistakes students always make
23 54= (2 5) 7 (2 5) 7= 10 7 Wrong ! since these numbers has no common base. 3 46= 126 Wrong ! since these numbers has no common base. (x3)2= x3+2= x5 3a.2a=5a
19
1 ∵ Thus, (where a 0) Law 6
20
From Law 2 Any integer m and n ∴ Thus Law 7
21
Example 5- Evaluate the following expressions
= 3 = = (a) (-2)-3 = 2 = -2 (b) = = 3 2 (1) 2 (3-3)2(20) (c) = = = 3 2
22
Classwork 1.5 1. 2. 3. 4.
23
= c b a = ) c b a ( = ) ( c b a 2 q p = q p = 2 q p a c b = . q p (a)
Example 6 - Simplify the following expressions and express your answers in positive indices (a) = - 3 1 2 . q p (b) 2 3 q p = - ) 3 ( 1 2 q p = - 3 1 2 q p 4 2 a c b = - 2 4 c b a = - 2 1 ) c b a = - 2 1 ) ( c b a (c) (
24
Classwork 1.6 (1) (2) 4 3 2 1 27 . ) ( x x1 = - + (3) (4)
25
[ ] [ ] ) ( b a = ) )( ( b a ) )( ( b a = b a = b a = b a = ) ( y x =
Example 7: Simplify the following expressions and express your answers in positive indices (a) 2 1 3 ) ( b a = - 4 2 6 ) )( ( b a - 4 6 2 ) )( ( b a = - 10 6 b a = 4 6 2 b a = - + 10 6 b a = - [ ] 1 3 2 ) ( y x = - = [ ] 1 3 6 2 y x - 6 2 x y 3 (b) 3 6 1 2 y x = -
26
y x ) ( = y x = y x y x = y x = y x = ) ( y x xy = 3 . y x 3 y x = 3 .
Classwork 1.7 (1) y x 3 1 2 ) ( = - y x 3 6 4 = - y x 3 4 6 - y x 12 = y x 3 4 6 = + - y x 12 = - 1 (2) 2 3 1 ) ( y x xy = - 6 2 1 3 . y x - 6 2 1 3 y x = - 2 6 3 . y x = - + -1 4 18 xy = - 4 18 y x =
27
[ ] [ ] ) ( y x = y x = y x y x = 8 . 2 b a = 32 b a ) 8 ( 2 b a = 8 2
- [ ] 2 6 y x = - 4 12 y x 4 12 y x = - 4 8 . 2 5 b a = + - 32 3 2 b a ) 8 ( 2 1 5 3 b a = - 8 2 5 1 b a = -
28
. y x = y x = y x ) ( y x = ) )( ( y x = ] ) ( 5 [ y x = ) ( 5 1 y x )
Additional example 2 8 4 . y x = 2 8 4 y x = + 10 8 y x 2 1 4 ) ( y x = - 2 4 8 ) )( ( y x = - 2 3 1 ] ) ( 5 [ y x = - 4 3 2 ) ( 5 1 y x - 4 3 2 ) ( 25 y x = 12 2 4 16 25 y x = 2 12 4 25 y x = - 10 4 25 y x =
29
8 a )( b = . 32 . 16 ) ( y x = - Exercise 1B (1c) (1b) (3b) (4b) (5a)
+ (5a) (6a) 2 6 4 1 32 . 16 ) ( y x = - +
30
= a a a = 1 a a2x=ax 2x-x=0 (a0, a1, a-1) x=0 2x - x
1.4 SIMPLE EXPONENTIAL EQUATIONS Equation involves unknowns in the exponents (a0, a1, a-1) a2x=ax a 2x = 1 a x = a 2x - x a 2x-x=0 ∴ x=0
31
(a) 6x=1 (b) 2x=8 2x=23 6x=60 ∴ x=3 ∴ x=0 2.13x=2 13x=1 x=0 ∴ 13x=130
Example 8: Solve the following exponential equations (a) 6x=1 (b) 2x=8 2x=23 6x=60 ∴ x=3 ∴ x=0 Classwork 1.8 (2) (4) 2.13x=2 13x=1 x=0 ∴ 13x=130 (3) 4x=256 4x=44 x=4 ∴ (1) 11x=1 11x=110 x=0 ∴ 3x=81 3x=34 x=4 ∴
32
(b) 42x+1=8x-2 (a) 52x=625 (22)2x+1=(23 )x-2 52x=54 22(2x+1)=23(x-2)
Example 9: Solve the following exponential equations (b) 42x+1=8x-2 (a) 52x=625 (22)2x+1=(23 )x-2 52x=54 22(2x+1)=23(x-2) 244x+2=23x-6 2x=4 4x+2=3x-6 ∴ x=2 4x-3x=-6-2 ∴ x=-8 Classwork 1.9 (4) 94x-1=272x+4 (3) 82x=16x+4 (32)4x-1=(33) 2x+4 (1) 32x=81 (2) 42x=256 (23)2x=(24) x+4 32(4x-1)=33(2x+4) 32x=34 42x=44 26x=24(x+4) 38x-2=26x+12 2x=4 26x=24x+16 2x=4 6x=4x+16 8x-2=6x+12 x=2 6x-4x=16 ∴ 8x-6x=12+2 x=2 ∴ 2x=16 2x=14 ∴ x=8 ∴ x=7
33
Example 10: Solve the following exponential equations
∴
34
Classwork 1.10 - Solve the following exponential equations
(1) (1) ∴ ∴
35
Scientific Notation科學記數法
In scientific world, we often study objects which are very large or very small e.g. Mass of an element of hydrogen is kg. Velocity of light = m/s Difficult to read and write!!! To overcome, we use a method called scientific notation to express these numbers approximately = 1.68 corr. to 3 sig fig = 3 108 kg = 2.59 corr. to 3 sig fig
36
Positive number N can be expressed as N = d 10n, where n is an integer and 1 d < 10.
Example 11- express the following numbers in scientific notation (a) = 1 = 1 10-6 (b) = 1.8 = 1 104 (c) = 2 = 2 106 (d) = 2.16 = 2.16 10-4 (e) 345 104 = 3.45 100 104 = 3.45 102 104 = 3.45 106 (f) 10-3 = 5.02 0.01 10-3 = 5.02 10-2 10-3 = 5.02 10-5
37
Classwork 1.1- express the following numbers in scientific notation
(1) = 3.74 = 1 106 (2) = 7.89 = 1 10-7 (3) 6 31 1011 = 6.311001011 = 6.31 1021011 = 6.311013 (4) 10-5=1.20370.110-5= 10-110-5 = 10-5 (5) – 103=-4.5080.0001104=-4.50810-4104=-4.50810-8 (6) 10-4 =7.0080.110-4=7.00810-110-3=7.00810-4
38
Example 12-. Evaluate the following,express your answers in scientific
Example 12- Evaluate the following,express your answers in scientific notation and correct to 3 significant figures (a) (3.52108)(7.911012) =(3.527.91 )(108 1012) = 1020 = 1011020 = 1021 =2.781021 Corr. to 3 sig. Fig. (b) 6 3 9 10 42 . 1 41913 75 5 16 8 - = Corr. to 3 sig. Fig.
39
Classwork 1.12 ,express your answers in scientific notation and correct to 3 significant figures
(1) (2.305107)(8.21012) =18.9011012 =1.891011012 =(2.3058.2)(107 105) =1.891013 (2) (210-12)(71023) =141011 =1.41011011 =(27)(10-121023) = 1.41012 (3) (3.810-10)(810-11) =30.410-21 =3.0410110-21 =(3.88)(10-1010-11) = 3.0410-20 (4) 2 1 3 10 69 . 4 46875 6 - = 10 4 6 29 . 2 2882 5 3 009 8 = - (5) 1 4 5 10 34 . 3 3357 67 - = (6)
40
(2.510-3)(3.610-4)=2.53.610(-3)+(-4) =910-7 =90.0000001
Example 13 – Express the values of the following as integers or decimal numbers (a) 2105=2 = (b) 3.1410-4=3.14 = (c) (2.510-3)(3.610-4)=2.53.610(-3)+(-4) =910-7 =9 = Classwork 1.13 (1) 6.36106=6.36 = (2) 4.1210-5=4.12 = (3) (1.310-5)(5.7107)= 1.35.7 =7.41102 =7.41100 =741 3 . 1 10 5 7 75 9 2 = - (4)
41
Example 14- express the following numbers in scientific notation and arrange them in ascending order
89, 98, 710, 107 Use calculator 710 107 98 89 = = = = =1.34108 =4.30107 =2.82108 =1107 8 Xy 9 = 7 10 107< 98 < 89 < 710 Compare powers of 10. The greater the power of 10, the greater the number. If powers of 10 are equal, compare values of d of the numbers
42
Numeral Systems Denary System (十進制)- we use everyday
In the algebraic expression ax3+ bx2 + cx1 + dx0 x is an integer more than 1. a, b, c and d are all non-negative integers less than x. Denary System (十進制)- we use everyday When x = 10, abcd is a denary number. abcd = a b c d 100 e.g (10)=3 100 3065(10)=3 1 The place value of each digit is ten times the place value of the digit on its right-hand side. Place values ten basic numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (less than 10) Place holder Distinguish values between 365 and 3065
43
Example 15 (a) Write down the place values of each digit of 50943 Digit 5 9 4 3 Place Value 10000 1000 100 10 1 (b) Express in the expanded form with base 10 50943(10)=5 1 =5 100
44
(2) Express the following as denary numbers
Classwork 1.15 (1) Write down the place value of each digit in the following numbers (a) 24071 (b) 9145 1 10 100 1000 10000 Place Value 7 4 2 Digit 5 9 (2) Express the following as denary numbers (a) 2541 = 2 100 (b) = 2 100
45
What are the expansions of 12.302?
Challenge What are the expansions of ? = 1 10-3 Example 16 Express the following as denary numbers. (a) 2 100 = =237 (b) 9 100 =9 100 =905067
46
Classwork 1.16 Express the following as denary numbers.
(1) 6 101 =6 100 = 6030 (2) 4 10 + 9 =4 100 =40029 5 10 =5 100 =50430 (3)
47
Exercise 1E (1) Write down the place value of each digit 2 in the following denary numbers (a) 1232 100, 1 (b) 10000, 10 (2) Express the following denary numbers in the expanded form with base 10 (a) 119= 1 100 (b) 2318= 2 100 (3) Express the following as denary numbers (a) 6 1 = 6 100 =68 (c) 8 = 8 101+ 1100 =800401 (e) 1 1 = 1 101+ 9100 =1409 (4) Find the greatest and smallest denary numbers (a) 2, 6, 4 Greatest 642, smallest 246 Greatest 5310, smallest 1035 (b) 0,1,3,5 (5) (a) 40014 10000, 1 10000/1=10000 10000, 10 10000/10=1000 (b)
48
Denary System Binary System 1 1 1 1 =10111(2)
$100 213(10) = 2 1 $10 $1 0 to 9 (<10) 213(10) = 2 100 Binary System 23(10)= 1 1 1 1 1 0 to1 (<2) =10111(2) 10111(2)= 1 20
49
Denary System Binary System 1 1 1 1 =10111(2)
$100 213(10) = 2 1 $10 $1 0 to 9 (<10) 213(10) = 2 100 Binary System 1 $16 $8 1 $4 1 $2 1 $1 23(10)= 0 to1 (<2) =10111(2) 10111(2)= 1 20
50
Binary System (二進制)- only computer understand
Denary System (十進制) e.g (10)=3 100 0 to 9 (<10) Binary System (二進制)- only computer understand When x = 2, abcd is a binary number. abcd(2)= a b c d 20 e.g (2)=1 20 1011(2)=1 1 The place value of each digit is two times the place value of the digit on its right-hand side. Place values 2 basic numerals: 0 to1 (< 2) Place holder Distinguish values between 111 and 1011
51
=22=4 =24=16 Digit 1 Place Value 32 16 8 4 2 1 2 4 8 16 Place Value
Example 17 (a) Write down the place value of each digit in (2) Digit 1 Place Value 32 16 8 4 2 (b) Find the place value of the digit 0 in (2) =22=4 Classwork 1.17 (a) Write down the place value of each digit in (2) 1 2 4 8 16 Place Value Digit =24=16 (b) Find the place value of the digit 0 in (2)
52
Example 18 Express the following binary numbers in the expanded form with base 2 (a) 1101(2)=1 20 (b) (2)=1 23 + 022 + 121 + 120 Classwork 1.18 Express the following binary numbers in the expanded form with base 2. (1) (2)=1 20 (2) (2) =1 23 + 122 + 121 + 020
53
Example 19 Express the following as binary numbers.
1 1 =1 20 =1100(2) (b) =1 20 1 1 =101001(2) (2) Classwork 1.19 (1) 1 4 =1 1 =10100(2) =1 20 1 (2) =1 1 =10101(2)
54
Conversion of Binary number into Denary number
Example 20 (b) Convert (2) into a denary number 101010(2) =1 20 = =42 Classwork 1.20 (b) Convert (2) into a denary number =1 20 101111(2) = = (1) =47 (2) (b) Convert (2) into a denary number (2) =1 22+ 121 + 020 = =242
55
Example 21 Convert 10011(2) into a denary number
10011 (2) = 1 20 =1 1 = =19 Classwork 1.21 (b) Convert (2) into a denary number =1 20 111000(2) = =32+8+4 (1) =56 (2) (b) Convert (2) into a denary number (2) = 1 22+ 121 + 020 = =86
56
Conversion of Denary number into Binary number
Method 1- Fill in the number from left to right 30(10) = 1 1 1 1 = 11110(2)
57
Conversion of Denary number into Binary number
Method 2- divide the denary number by 2 successively write the answer in terms of remainders from bottom to top 2) 30 2) 15 2) 7 1 2) 3 1 2) 1 1 1 11110(2) 30(10) =
58
Example 22- Convert the following denary into binary number
2) 32 8 16 4 2 1 (a) 21 2) 21 5 10 2 1 (b) 32 =10101(2) =100000(2)
59
Classwork 1.22- Convert the following denary into binary number
=11100(2) 2) 28 7 14 3 1 (1) 11 2) 11 2 5 1 =1011(2) (2) 28 2) 64 16 32 8 4 1 2 = (2) (3) 64
60
Hexadecimal System (十六進制)
Binary System 0,1 (<2) 23(10)= 1 $16 1 $8 $4 1 1 $2 $1 =10111(2) 12F(10) 10111(2)= 1 20 Hexadecimal System (十六進制) =303(10) = 1 F $256 $16 $1 =12F(16) 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (<16) 12F(16)=1 F 160
61
Digit 3 9 A 1 Place Value 4096 163 256 162 16 161 160 Digit 9 F C
Example 23 (a) Write down the place value of each digit in 39A1(16) Digit 3 9 A 1 Place Value 4096 163 256 162 16 161 160 (b) Find the place value of the digit in 4A067(16)=162=256 Classwork 1.23 (a) Write down the place value of each digit in 9FFC(16) Digit 9 F C Place Value 4096 256 16 1 (a) Write down the place value of digit A in FC6A7(16) =16
62
Example 24 (a) 82A(16)=8 162 + 2 161 + A 160
Express the following hexadecimal numbers in the expanded form with base 16 (a) 82A(16)=8 A 160 (b) ABCD(16)=10 160 Classwork 1.24 Express the following hexadecimal numbers in the expanded form with base 16 (1) F3CF(16)=15 160 (2) 100FFF(16)=1 160
63
Example 25 Convert the following hexadecimal numbers into denary numbers (a) 123(16)=1 160= = 291(10) (b) ABC (16)=10 160 =10 =2748 Classwork 1.25 (a) 2F3(16)=2 160= = 755(10) (b) 3DD (16)=3 160 = =989(10) (c) AFFF(16)=10 160 = =989(10)
64
Example 26 – Convert the following denary numbers into hexadecimal numbers
=159(16) 16) 16) 45 345 16) 9 16) 2 13 (D) 21 16) 5 2 1 1
65
Classwork 1.26 – Convert the following denary numbers into hexadecimal numbers
(1) 321(10) =141(16) (2) 405(10) =195(16) 16) 321 16) 405 16) 1 16) 5 20 25 16) 4 1 16) 9 1 1 1 (3) 4110(10) =100E(16) 16) 4110 16) 14(E) 256 16) 16 16) 1 1
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.