Presentation is loading. Please wait.

Presentation is loading. Please wait.

25 an = 記住:a zero Index Concepts 2  2  2  2  2 a  a  a  …  a

Similar presentations


Presentation on theme: "25 an = 記住:a zero Index Concepts 2  2  2  2  2 a  a  a  …  a"— Presentation transcript:

1 25 an = 記住:a zero Index Concepts 2  2  2  2  2 a  a  a  …  a
(5 times) index/exponent an = (n times) a  a  a  …  a base “a to the power n” 記住:a zero

2 Law of positive integral indices
Class Activity 1 23 x 24 = (2 x 2 x 2) x (2 x 2 x 2 x 2) = 23+4 = 27 a2 x a3 = (a x a) x (a x a x a) = a2+3 = a5 b5 x b4 = (b x b x b x b x b) x (b x b x b x b) = b5+4 = b9 am  an = a  a  …  a (m times) (n times) a  a  …  a (m x n times) = am  an = am + n am  an law 1

3 Class Activity 2

4 = , where m > n and a  0 , where m < n and a  0 Law 2

5 (a) a7.a3 = a7+3 = a10 an.a3 = an+3 (b) a7 a9-2 = (c) (d)
EXAMPLE 1 – Simplify the following expressions (a) a7.a3 = a7+3 = a10 an.a3 = an+3 (b) a7 a9-2 = (c) (d)

6 a (23)2 = (2  2  2)  (2  2  2) = 232= 26 (a4)3 =
Class Activity (23)2 = (2  2  2)  (2  2  2) = 232= 26 (a4)3 = (a  a  a  a)  (a  a  a  a) = a43= a12 (b3)5= (bbb)  b35= a15 (bbb)= n times of am (aa…a)  (aa…a) ……  nm times of a (aa…a) m n a Law 3

7 (a5)2= a52= a10 (an)3= an3= a3n (a4)m= a4m= a4m (a) (b) (c) x12
Example 2- Simplify the following expressions (a5)2= a52= a10 (a) (an)3= (b) an3= a3n (a4)m= a4m= (c) a4m Classwork- Simplify the following expressions x12 (x4)3= x43= (1) x6n (xn)6= xn6= (2) x5m (x5)m= x5m= (3)

8 (2  3) (2  3) (2  3) (2  3) (2  3)4= =(2  2  2  2)
Class Activity (2  3) (2  3) (2  3) (2  3) (2  3)4= =(2  2  2  2) (3  3  3  3) =24 34 (3  5)5= (3  5) (3  5) (3  5) (3  5) (3  5) (5  5  5  5  5) =(3  3  3  3  3) =35 55 (ab)3= (a  b) (a  b) (a  b) =(a  a  a) (b  b  b) =a3 b3

9 (a  b) (a  b)…. (a  b) (ab)m= (ab)m= (a  a  …  a) 
m times of ab (ab)m= (a  a  …  a)  (b  b  …  b) m times of a m times of b (ab)m= am  bn Law 4

10 4 4 = = = 4 5 5 = = = 5 3 3 = = = 3 (n times of ) Law 5 (where b  0)

11 EXAMPLE 3: Simplify the following expressions
4 4 4 = (b) = 4 2 2 3 3 2 3 6 (c) 3 = = = 3 3 3 Classwork 1.3 3 (2) = (2x)5= 25x5= 32x5 (1) 2 (3) = 5 2

12 EXAMPLE 4: Simplify the following expressions
(b) (c)

13 Classwork 1.4 1. 2. 40 3.

14 (1b) a2.a3.a4=a2+3+4=a9 (2b) (3b) (x7)3 =x73 =x21 (4b)
Exercise 1A Level 1 (1b) a2.a3.a4=a2+3+4=a9 (2b) (3b) (x7)3 =x73 =x21 (4b) (4a2)3 =43. (a2)3=64. a23 =64. a6

15 (5b) 23.(b2)3. 42(b3)2 (6b) (2b2)3(4b3)2= =23.(b2)3. 42(b3)2
Exercise 1A Level 2 (5b) 23.(b2)3. 42(b3)2 (6b) (2b2)3(4b3)2= =23.(b2)3. 42(b3)2 =8. b6. 16b6 =8. 16 b6. b6 =128 b6+6 =128 b12

16 (7b) (8b)

17 (9b) (10b)

18 Mistakes students always make
23  54= (2  5) 7 (2  5) 7= 10 7 Wrong ! since these numbers has no common base. 3  46= 126 Wrong ! since these numbers has no common base. (x3)2= x3+2= x5 3a.2a=5a

19 1 Thus, (where a  0) Law 6

20 From Law 2 Any integer m and n Thus Law 7

21 Example 5- Evaluate the following expressions
= 3 = = (a) (-2)-3 = 2 = -2 (b) = = 3 2 (1) 2 (3-3)2(20) (c) = = = 3 2

22 Classwork 1.5 1. 2. 3. 4.

23 = c b a = ) c b a ( = ) ( c b a 2 q p = q p = 2 q p a c b = . q p (a)
Example 6 - Simplify the following expressions and express your answers in positive indices (a) = - 3 1 2 . q p (b) 2 3 q p = - ) 3 ( 1 2 q p = - 3 1 2 q p 4 2 a c b = - 2 4 c b a = - 2 1 ) c b a = - 2 1 ) ( c b a (c) (

24 Classwork 1.6 (1) (2) 4 3 2 1 27 . ) ( x x1 = - + (3) (4)

25 [ ] [ ] ) ( b a = ) )( ( b a ) )( ( b a = b a = b a = b a = ) ( y x =
Example 7: Simplify the following expressions and express your answers in positive indices (a) 2 1 3 ) ( b a = - 4 2 6 ) )( ( b a - 4 6 2 ) )( ( b a = - 10 6 b a = 4 6 2 b a = - + 10 6 b a = - [ ] 1 3 2 ) ( y x = - = [ ] 1 3 6 2 y x - 6 2 x y 3 (b) 3 6 1 2 y x = -

26 y x ) ( = y x = y x y x = y x = y x = ) ( y x xy = 3 . y x 3 y x = 3 .
Classwork 1.7 (1) y x 3 1 2 ) ( = - y x 3 6 4 = - y x 3 4 6 - y x 12 = y x 3 4 6 = + - y x 12 = - 1 (2) 2 3 1 ) ( y x xy = - 6 2 1 3 . y x - 6 2 1 3 y x = - 2 6 3 . y x = - + -1 4 18 xy = - 4 18 y x =

27 [ ] [ ] ) ( y x = y x = y x y x = 8 . 2 b a = 32 b a ) 8 ( 2 b a = 8 2
- [ ] 2 6 y x = - 4 12 y x 4 12 y x = - 4 8 . 2 5 b a = + - 32 3 2 b a ) 8 ( 2 1 5 3 b a = - 8 2 5 1 b a = -

28 . y x = y x = y x ) ( y x = ) )( ( y x = ] ) ( 5 [ y x = ) ( 5 1 y x )
Additional example 2 8 4 . y x = 2 8 4 y x = + 10 8 y x 2 1 4 ) ( y x = - 2 4 8 ) )( ( y x = - 2 3 1 ] ) ( 5 [ y x = - 4 3 2 ) ( 5 1 y x - 4 3 2 ) ( 25 y x = 12 2 4 16 25 y x = 2 12 4 25 y x = - 10 4 25 y x =

29 8 a )( b = . 32 . 16 ) ( y x = - Exercise 1B (1c) (1b) (3b) (4b) (5a)
+ (5a) (6a) 2 6 4 1 32 . 16 ) ( y x = - +

30 = a a a = 1 a a2x=ax 2x-x=0 (a0, a1, a-1) x=0 2x - x
1.4 SIMPLE EXPONENTIAL EQUATIONS Equation involves unknowns in the exponents (a0, a1, a-1) a2x=ax a 2x = 1 a x = a 2x - x a 2x-x=0 x=0

31 (a) 6x=1 (b) 2x=8 2x=23 6x=60 ∴ x=3 ∴ x=0 2.13x=2 13x=1 x=0 ∴ 13x=130
Example 8: Solve the following exponential equations (a) 6x=1 (b) 2x=8 2x=23 6x=60 x=3 x=0 Classwork 1.8 (2) (4) 2.13x=2 13x=1 x=0 13x=130 (3) 4x=256 4x=44 x=4 (1) 11x=1 11x=110 x=0 3x=81 3x=34 x=4

32 (b) 42x+1=8x-2 (a) 52x=625 (22)2x+1=(23 )x-2 52x=54 22(2x+1)=23(x-2)
Example 9: Solve the following exponential equations (b) 42x+1=8x-2 (a) 52x=625 (22)2x+1=(23 )x-2 52x=54 22(2x+1)=23(x-2) 244x+2=23x-6 2x=4 4x+2=3x-6 x=2 4x-3x=-6-2 x=-8 Classwork 1.9 (4) 94x-1=272x+4 (3) 82x=16x+4 (32)4x-1=(33) 2x+4 (1) 32x=81 (2) 42x=256 (23)2x=(24) x+4 32(4x-1)=33(2x+4) 32x=34 42x=44 26x=24(x+4) 38x-2=26x+12 2x=4 26x=24x+16 2x=4 6x=4x+16 8x-2=6x+12 x=2 6x-4x=16 8x-6x=12+2 x=2 2x=16 2x=14 x=8 x=7

33 Example 10: Solve the following exponential equations

34 Classwork 1.10 - Solve the following exponential equations
(1) (1)

35 Scientific Notation科學記數法
In scientific world, we often study objects which are very large or very small e.g. Mass of an element of hydrogen is kg. Velocity of light = m/s Difficult to read and write!!! To overcome, we use a method called scientific notation to express these numbers approximately = 1.68  corr. to 3 sig fig = 3  108 kg = 2.59  corr. to 3 sig fig

36 Positive number N can be expressed as N = d  10n, where n is an integer and 1  d < 10.
Example 11- express the following numbers in scientific notation (a) = 1  = 1 10-6 (b) = 1.8  = 1 104 (c) = 2  = 2 106 (d) = 2.16  = 2.16 10-4 (e) 345  104 = 3.45  100  104 = 3.45  102  104 = 3.45  106 (f)  10-3 = 5.02  0.01  10-3 = 5.02  10-2  10-3 = 5.02  10-5

37 Classwork 1.1- express the following numbers in scientific notation
(1) = 3.74  = 1 106 (2) = 7.89  = 1 10-7 (3) 6 31  1011 = 6.311001011 = 6.31  1021011 = 6.311013 (4) 10-5=1.20370.110-5= 10-110-5 = 10-5 (5) – 103=-4.5080.0001104=-4.50810-4104=-4.50810-8 (6) 10-4 =7.0080.110-4=7.00810-110-3=7.00810-4

38 Example 12-. Evaluate the following,express your answers in scientific
Example 12- Evaluate the following,express your answers in scientific notation and correct to 3 significant figures (a) (3.52108)(7.911012) =(3.527.91 )(108 1012) = 1020 = 1011020 = 1021 =2.781021 Corr. to 3 sig. Fig. (b) 6 3 9 10 42 . 1 41913 75 5 16 8 - = Corr. to 3 sig. Fig.

39 Classwork 1.12 ,express your answers in scientific notation and correct to 3 significant figures
(1) (2.305107)(8.21012) =18.9011012 =1.891011012 =(2.3058.2)(107 105) =1.891013 (2) (210-12)(71023) =141011 =1.41011011 =(27)(10-121023) = 1.41012 (3) (3.810-10)(810-11) =30.410-21 =3.0410110-21 =(3.88)(10-1010-11) = 3.0410-20 (4) 2 1 3 10 69 . 4 46875 6 - = 10 4 6 29 . 2 2882 5 3 009 8 = - (5) 1 4 5 10 34 . 3 3357 67 - = (6)

40 (2.510-3)(3.610-4)=2.53.610(-3)+(-4) =910-7 =90.0000001
Example 13 – Express the values of the following as integers or decimal numbers (a) 2105=2  = (b) 3.1410-4=3.14  = (c) (2.510-3)(3.610-4)=2.53.610(-3)+(-4) =910-7 =9 = Classwork 1.13 (1) 6.36106=6.36  = (2) 4.1210-5=4.12 = (3) (1.310-5)(5.7107)= 1.35.7 =7.41102 =7.41100 =741 3 . 1 10 5 7 75 9 2 = - (4)

41 Example 14- express the following numbers in scientific notation and arrange them in ascending order
89, 98, 710, 107 Use calculator 710 107 98 89 = = = = =1.34108 =4.30107 =2.82108 =1107 8 Xy 9 = 7 10 107< 98 < 89 < 710 Compare powers of 10. The greater the power of 10, the greater the number. If powers of 10 are equal, compare values of d of the numbers

42 Numeral Systems Denary System (十進制)- we use everyday
In the algebraic expression ax3+ bx2 + cx1 + dx0 x is an integer more than 1. a, b, c and d are all non-negative integers less than x. Denary System (十進制)- we use everyday When x = 10, abcd is a denary number. abcd = a  b  c  d  100 e.g (10)=3     100 3065(10)=3     1 The place value of each digit is ten times the place value of the digit on its right-hand side. Place values ten basic numerals: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 (less than 10) Place holder Distinguish values between 365 and 3065

43 Example 15 (a) Write down the place values of each digit of 50943 Digit 5 9 4 3 Place Value 10000 1000 100 10 1 (b) Express in the expanded form with base 10 50943(10)=5     1 =5    100

44 (2) Express the following as denary numbers
Classwork 1.15 (1) Write down the place value of each digit in the following numbers (a) 24071 (b) 9145 1 10 100 1000 10000 Place Value 7 4 2 Digit 5 9 (2) Express the following as denary numbers (a) 2541 = 2   100 (b) = 2     100

45 What are the expansions of 12.302?
Challenge What are the expansions of ? = 1      10-3 Example 16 Express the following as denary numbers. (a) 2    100 = =237 (b) 9     100 =9       100 =905067

46 Classwork 1.16 Express the following as denary numbers.
(1) 6 101 =6   100 = 6030 (2) 4 10 + 9 =4      100 =40029 5    10 =5      100 =50430 (3)

47 Exercise 1E (1) Write down the place value of each digit 2 in the following denary numbers (a) 1232 100, 1 (b) 10000, 10 (2) Express the following denary numbers in the expanded form with base 10 (a) 119= 1    100 (b) 2318= 2     100 (3) Express the following as denary numbers (a) 6  1 = 6   100 =68 (c) 8   = 8    101+ 1100 =800401 (e) 1   1 = 1  101+ 9100 =1409 (4) Find the greatest and smallest denary numbers (a) 2, 6, 4 Greatest 642, smallest 246 Greatest 5310, smallest 1035 (b) 0,1,3,5 (5) (a) 40014 10000, 1 10000/1=10000 10000, 10 10000/10=1000 (b)

48 Denary System Binary System 1 1 1 1 =10111(2)
$100 213(10) = 2    1 $10 $1 0 to 9 (<10) 213(10) = 2    100 Binary System 23(10)=      1 1 1 1 1 0 to1 (<2) =10111(2) 10111(2)= 1     20

49 Denary System Binary System 1 1 1 1 =10111(2)
$100 213(10) = 2    1 $10 $1 0 to 9 (<10) 213(10) = 2    100 Binary System 1 $16 $8 1 $4 1 $2 1 $1 23(10)=      0 to1 (<2) =10111(2) 10111(2)= 1     20

50 Binary System (二進制)- only computer understand
Denary System (十進制) e.g (10)=3     100 0 to 9 (<10) Binary System (二進制)- only computer understand When x = 2, abcd is a binary number. abcd(2)= a  b  c  d  20 e.g (2)=1     20 1011(2)=1     1 The place value of each digit is two times the place value of the digit on its right-hand side. Place values 2 basic numerals: 0 to1 (< 2) Place holder Distinguish values between 111 and 1011

51 =22=4 =24=16 Digit 1 Place Value 32 16 8 4 2 1 2 4 8 16 Place Value
Example 17 (a) Write down the place value of each digit in (2) Digit 1 Place Value 32 16 8 4 2 (b) Find the place value of the digit 0 in (2) =22=4 Classwork 1.17 (a) Write down the place value of each digit in (2) 1 2 4 8 16 Place Value Digit =24=16 (b) Find the place value of the digit 0 in (2)

52 Example 18 Express the following binary numbers in the expanded form with base 2 (a) 1101(2)=1     20 (b) (2)=1   23 + 022 + 121 + 120 Classwork 1.18 Express the following binary numbers in the expanded form with base 2. (1) (2)=1      20 (2) (2) =1  23 + 122 + 121 + 020

53 Example 19 Express the following as binary numbers.
1     1 =1     20 =1100(2) (b) =1       20 1    1 =101001(2) (2) Classwork 1.19 (1) 1   4 =1      1 =10100(2) =1      20 1   (2) =1      1 =10101(2)

54 Conversion of Binary number into Denary number
Example 20 (b) Convert (2) into a denary number 101010(2) =1       20 = =42 Classwork 1.20 (b) Convert (2) into a denary number =1       20 101111(2) = = (1) =47 (2) (b) Convert (2) into a denary number (2) =1     22+ 121 + 020 = =242

55 Example 21 Convert 10011(2) into a denary number
10011 (2) = 1      20 =1      1 = =19 Classwork 1.21 (b) Convert (2) into a denary number =1       20 111000(2) = =32+8+4 (1) =56 (2) (b) Convert (2) into a denary number (2) = 1    22+ 121 + 020 = =86

56 Conversion of Denary number into Binary number
Method 1- Fill in the number from left to right 30(10) = 1 1 1 1 = 11110(2)

57 Conversion of Denary number into Binary number
Method 2- divide the denary number by 2 successively write the answer in terms of remainders from bottom to top 2) 30 2) 15 2) 7 1 2) 3 1 2) 1 1 1 11110(2) 30(10) =

58 Example 22- Convert the following denary into binary number
2) 32 8 16 4 2 1 (a) 21 2) 21 5 10 2 1 (b) 32 =10101(2) =100000(2)

59 Classwork 1.22- Convert the following denary into binary number
=11100(2) 2) 28 7 14 3 1 (1) 11 2) 11 2 5 1 =1011(2) (2) 28 2) 64 16 32 8 4 1 2 = (2) (3) 64

60 Hexadecimal System (十六進制)
Binary System 0,1 (<2) 23(10)=      1 $16 1 $8 $4 1 1 $2 $1 =10111(2) 12F(10) 10111(2)= 1     20 Hexadecimal System (十六進制) =303(10) = 1   F  $256 $16 $1 =12F(16) 0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F (<16) 12F(16)=1   F  160

61 Digit 3 9 A 1 Place Value 4096 163 256 162 16 161 160 Digit 9 F C
Example 23 (a) Write down the place value of each digit in 39A1(16) Digit 3 9 A 1 Place Value 4096 163 256 162 16 161 160 (b) Find the place value of the digit in 4A067(16)=162=256 Classwork 1.23 (a) Write down the place value of each digit in 9FFC(16) Digit 9 F C Place Value 4096 256 16 1 (a) Write down the place value of digit A in FC6A7(16) =16

62 Example 24 (a) 82A(16)=8  162 + 2  161 + A  160
Express the following hexadecimal numbers in the expanded form with base 16 (a) 82A(16)=8   A  160 (b) ABCD(16)=10     160 Classwork 1.24 Express the following hexadecimal numbers in the expanded form with base 16 (1) F3CF(16)=15     160 (2) 100FFF(16)=1     160

63 Example 25 Convert the following hexadecimal numbers into denary numbers (a) 123(16)=1    160= = 291(10) (b) ABC (16)=10    160 =10   =2748 Classwork 1.25 (a) 2F3(16)=2   160= = 755(10) (b) 3DD (16)=3  160 = =989(10) (c) AFFF(16)=10   160 = =989(10)

64 Example 26 – Convert the following denary numbers into hexadecimal numbers
=159(16) 16) 16) 45 345 16) 9 16) 2 13 (D) 21 16) 5 2 1 1

65 Classwork 1.26 – Convert the following denary numbers into hexadecimal numbers
(1) 321(10) =141(16) (2) 405(10) =195(16) 16) 321 16) 405 16) 1 16) 5 20 25 16) 4 1 16) 9 1 1 1 (3) 4110(10) =100E(16) 16) 4110 16) 14(E) 256 16) 16 16) 1 1


Download ppt "25 an = 記住:a zero Index Concepts 2  2  2  2  2 a  a  a  …  a"

Similar presentations


Ads by Google