Presentation is loading. Please wait.

Presentation is loading. Please wait.

en interaction avec des plasmas caractérisées par microscopie Raman

Similar presentations


Presentation on theme: "en interaction avec des plasmas caractérisées par microscopie Raman"— Presentation transcript:

1 en interaction avec des plasmas caractérisées par microscopie Raman
Surfaces de Be et de WO3 en interaction avec des plasmas caractérisées par microscopie Raman Cédric Pardanaud C. Martin, G. Giacometti, P. Roubin, H. Hijazi, Y. Addab

2 Plasma wall interaction 
Impurities  (O, N, C, He, Be, W…) Plasma wall interaction  Safety issue (T retention, dusts production) Material modifications (Mixed materials) Context Erosion/deposition T up to ≈1000°C ITER/JET (Be/W) 1/7

3 Plasma wall interaction 
Impurities  (O, N, C, He, Be, W…) Plasma wall interaction  Safety issue (T retention, dusts production) Material modifications (Mixed materials) Main aim: Ability to detect by chemical bondings: - hydrogen isotope in materials - mixed materials Context Erosion/deposition T up to ≈1000°C ITER/JET (Be/W) 1/7

4 Experimental tool: Raman microscopy
(lL=514.5nm) LASER focalised by a microscope Inelastic scattering Solid vibrational modes E1 E2 Bending Stretching, … Intensity (cnt.) Raman shift (cm-1) Sensitive to chemical bonds (Be-D, Be-H, Be-Be, W-O, C-C,…) Environmental effects (structure, defects, stress,…) Local probe (surface ≈ 1mm2, depth ≈ 30 nm) « Fast » technique (1 spectrum in ≈ 1 s to few hours) 2/7

5 JET sample measurements:
Observations in tokamaks: JET mirror samples JET sample measurements: - KTH, Stockholm Few nm deposits with: Be, C, O,… Mo 3/7

6 JET sample measurements:
Observations in tokamaks: JET mirror samples JET sample measurements: - KTH, Stockholm Few nm deposits with: Be, C, O,… Mo MoO3-x  Mirror (Mo) oxydation  Trace of C-O (but no aromatic carbon phases)  Be carbide phases ?  D related bonds ? 3/7

7 JET sample measurements:
Observations in tokamaks: JET mirror samples JET sample measurements: - KTH, Stockholm C-O Few nm deposits with: Be, C, O,… C=O Mo MoO3-x  Mirror (Mo) oxydation  Trace of C-O (but no aromatic carbon phases)  Be carbide phases ?  D related bonds ? 3/7

8 JET sample measurements:
Observations in tokamaks: JET mirror samples JET sample measurements: - KTH, Stockholm C-O Few nm deposits with: Be, C, O,… C=O Mo Be-C ??? MoO3-x  Mirror (Mo) oxydation  Trace of C-O (but no aromatic carbon phases)  Be carbide phases ? → H retention modification !  D related bonds ? 3/7

9 Simulation in lab’: Deuterium implantation in Beryllium
Lab’ experiments: - FZJ, Julich 2 keV D+ Normal incidence F up to D+.cm-2 Be 4/7

10 Dendrites are made of BeD2 cristal Reservoir of D !
Simulation in lab’: Deuterium implantation in Beryllium Lab’ experiments: - FZJ, Julich 2 keV D+ Normal incidence F up to D+.cm-2 Be Dendrites are made of BeD2 cristal Reservoir of D ! 4/7

11 Simulation in lab’: Beryllium carbide identification
Lab’ experiments: INOE, Bucharest TVA deposition method Quantum calc.: IRSN+PIIM (see L. Ferry’s talk) Codeposits : Be + C Wafer  Comparison with quantum modelling (DFT) Be2C phase formation  Coexistence of Be+Be2C+C phases 5/7

12 Simulation in lab’: Beryllium carbide identification
Lab’ experiments: INOE, Bucharest TVA deposition method Codeposits : Be + C Wafer  Comparison with quantum modelling (DFT) Be2C phase formation  Coexistence of Be+Be2C+C phases 5/7

13 Tungsten oxide formation and retention modification
Lab’ experiments: PIIM, Marseille Thermal growth Heated under vacuum W Heating WO3 W Different kind of oxides: need to better characterize them ! D-retention in each of these oxides ? 6/7

14 Tungsten oxide formation and retention modification
Lab’ experiments: PIIM, Marseille Thermal growth Heated under vacuum W Heating WO3 750°C W 5 mm Different kind of oxides: need to better characterize them ! D-retention in each of these oxides ? 6/7

15 Tungsten oxide formation and retention modification
Lab’ experiments: PIIM, Marseille Thermal growth Heated under vacuum And/or exposed to plasmas/ions W Heating WO3 W Irradiation W 5 mm Different kind of oxides: need to better characterize them ! D-retention in each of these oxides ? 6/7

16 Conclusion: prepare post-mortem analyses in tokamaks
Spectroscopic parameters (line width and position) 7/7

17 Conclusion: prepare post-mortem analyses in tokamaks
Spectroscopic parameters (line width and position) 7/7

18 Conclusion: prepare post-mortem analyses in tokamaks
7/7

19 Conclusion: prepare post-mortem analyses in tokamaks
7/7

20 Quantitative can be possible by comparing with Lab experiments
Conclusion: prepare post-mortem analyses in tokamaks NTR deposits contain less D than TPL deposits Able to make statistics on large scale Quantitative can be possible by comparing with Lab experiments 7/7

21 Collaborators M. I. Rusu, C. Pardanaud,
C. Martin, Y. Addab, H. Hussein, P. Roubin, M. Minissale, L. Ferry, F. Virot, M. Barrachin , Y. Ferro, C Porosnicu, P Dinca, M Lungu, C P Lungu, M. Köppen, T. Dittmar, P. Dollase, M. Oberkofler, Ch. Linsmeier AMU, Marseille, France IRSN, Cadarache, France INOE 2000, Bucharest, Romania INFLPR, Bucharest, Romania IPP, Garching, Germany IEK4, Jülich, Germany


Download ppt "en interaction avec des plasmas caractérisées par microscopie Raman"

Similar presentations


Ads by Google