Presentation is loading. Please wait.

Presentation is loading. Please wait.

ME 475/675 Introduction to Combustion

Similar presentations


Presentation on theme: "ME 475/675 Introduction to Combustion"β€” Presentation transcript:

1 ME 475/675 Introduction to Combustion
Lecture 11 Mass Transfer, Stefan problem, Liquid/vapor interface boundary condition, Example problem 3.9

2 Announcements Midterm 1 HW 5 Due Friday, September 29]
Monday, October 2, 2017 8-10 AM, PE 102 Review Friday, September 29 HW 5 Due Friday, September 29]

3 Chapter 3 Introduction to Mass Transfer
x x x x x x x x x x x x x x x o o o x x x x x x x x o o o o x x x x x o o x x x x x o o o o x x x x o o o o x x o o o o o o o o o x o o o 1- Mass Fraction Y Yx Yo π‘š " x 0- Consider two species, x and o Concentration of β€œx” is larger on the left, of β€œo” is larger on the right Species diffuse through (around) each other They move from regions of high to low concentrations Think of perfume in a room Mass flux is driven by concentration difference (gradients) Analogously, heat transfer is driven by temperature differences There may also be bulk motion of the mixture (advection, wind) Total mass flux rate: π‘š " = π‘š π‘₯ " + π‘š π‘œ " π‘˜π‘” π‘ βˆ— π‘š 2 (sum of component mass fluxes)

4 Quantitative phenomena and expressions
π‘š " Yx Yo Mass Fraction Y x Rate of mass flux of β€œx” in the π‘₯ direction π‘š π‘₯ " = π‘Œ π‘₯ π‘š " + βˆ’πœŒ π’Ÿ π‘₯π‘œ 𝑑 π‘Œ π‘₯ 𝑑π‘₯ ; π‘š " = π‘š π‘₯ " + π‘š π‘œ " Advection (Bulk Motion) Diffusion (due to concentration gradient) π‘š " = π‘š π‘₯ " + π‘š π‘œ " π’Ÿ π‘₯π‘œ = Diffusion coefficient of x through o Units π‘˜π‘” π‘š 2 𝑠 π‘š 3 π‘˜π‘” π‘š= π‘š 2 𝑠 Appendix D, pp For gases, book shows that 𝜌 π’Ÿ π‘₯π‘œ ~ 𝑇 𝑃 0

5 Stefan Problem (no reaction)
x One dimensional tube (Cartesian) Gas B is β€œstationary:” π‘š 𝐡 " =0 Gas A moves upward π‘š 𝐴 " >0 Constant, Want to find π‘š 𝐴 " π‘š 𝐴 " = π‘Œ 𝐴 π‘š 𝐴 " + π‘š 𝐡 " + βˆ’πœŒ π’Ÿ 𝐴𝐡 𝑑 π‘Œ 𝐴 𝑑π‘₯ π‘š 𝐴 " 1βˆ’ π‘Œ 𝐴 =βˆ’πœŒ π’Ÿ 𝐴𝐡 𝑑 π‘Œ 𝐴 𝑑π‘₯ π‘š 𝐴 " 𝜌 π’Ÿ 𝐴𝐡 𝑑π‘₯= βˆ’π‘‘ π‘Œ 𝐴 1βˆ’ π‘Œ 𝐴 ; 0 𝐿 π‘š 𝐴 " 𝜌 π’Ÿ 𝐴𝐡 𝑑π‘₯ = π‘Œ 𝐴,𝑖 π‘Œ 𝐴,∞ βˆ’π‘‘ π‘Œ 𝐴 1βˆ’ π‘Œ 𝐴 π’Ÿ 𝐴𝐡 𝜌=𝑓𝑛 π‘₯ , but treat as constant π‘š 𝐴 " 𝐿 𝜌 π’Ÿ 𝐴𝐡 = ln 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 π‘Œ 𝐴,∞ L- YB YA B+A Y π‘Œ 𝐴,𝑖 A

6 Mass Flux of evaporating liquid A
π‘š 𝐴 " = 𝜌 π’Ÿ 𝐴𝐡 𝐿 ln 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 Increases with 𝜌 π’Ÿ 𝐴𝐡 and π‘Œ 𝐴,𝑖 Decreases with 𝐿 and π‘Œ 𝐴,∞ For π‘Œ 𝐴,∞ =0 (strong wind at π‘₯=𝐿) π‘š 𝐴 " 𝜌 π’Ÿ 𝐴𝐡 𝐿 = ln 1 1βˆ’ π‘Œ 𝐴,𝑖 (dimensionless) π‘š 𝐴 " increases slowly for small π‘Œ 𝐴,𝑖 Then very rapidly for π‘Œ 𝐴,𝑖 > 0.95 What is the shape of the π‘Œ 𝐴 versus x profile? π‘š 𝐴 " 𝜌 π’Ÿ 𝐴𝐡 𝐿 π‘Œ 𝐴,𝑖

7 π‘Œ 𝐴 π‘₯ Profile Shape π‘š 𝐴 " 𝜌 π’Ÿ 𝐴𝐡 0 π‘₯ 𝑑π‘₯ = π‘Œ 𝐴,𝑖 π‘Œ 𝐴 (π‘₯) βˆ’π‘‘ π‘Œ 𝐴 1βˆ’ π‘Œ π‘₯
π‘š 𝐴 " 𝜌 π’Ÿ 𝐴𝐡 0 π‘₯ 𝑑π‘₯ = π‘Œ 𝐴,𝑖 π‘Œ 𝐴 (π‘₯) βˆ’π‘‘ π‘Œ 𝐴 1βˆ’ π‘Œ π‘₯ π‘š 𝐴 " π‘₯ 𝜌 π’Ÿ 𝐴𝐡 = ln 1βˆ’ π‘Œ 𝐴 (π‘₯) 1βˆ’ π‘Œ 𝐴,𝑖 but π‘š 𝐴 " 𝐿 𝜌 π’Ÿ 𝐴𝐡 = ln 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 Ratio: π‘₯ 𝐿 = ln 1βˆ’ π‘Œ 𝐴 (π‘₯) 1βˆ’ π‘Œ 𝐴,𝑖 ln 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 ; π‘₯ 𝐿 ln 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 = ln 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 π‘₯ 𝐿 = ln 1βˆ’ π‘Œ 𝐴 (π‘₯) 1βˆ’ π‘Œ 𝐴,𝑖 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 π‘₯ 𝐿 = 1βˆ’ π‘Œ 𝐴 (π‘₯) 1βˆ’ π‘Œ 𝐴,𝑖 π‘Œ 𝐴 π‘₯ =1βˆ’ 1βˆ’ π‘Œ 𝐴,𝑖 1βˆ’ π‘Œ 𝐴,∞ 1βˆ’ π‘Œ 𝐴,𝑖 π‘₯ 𝐿 For π‘Œ 𝐴,∞ =0 π‘Œ 𝐴 π‘₯ =1βˆ’ 1βˆ’ π‘Œ 𝐴,𝑖 βˆ’ π‘Œ 𝐴,𝑖 π‘₯ 𝐿 Large π‘Œ 𝐴,𝑖 profiles exhibit a β€œboundary layer” near exit (large diffusion near interface) π‘Œ 𝐴,𝑖 =0.99 π‘Œ 𝐴,𝑖 =0.9 π‘Œ 𝐴 π‘₯ π‘Œ 𝐴,𝑖 =0.5 π‘Œ 𝐴,𝑖 =0.1 π‘Œ 𝐴,𝑖 =0.05 π‘₯ 𝐿

8 Liquid-Vapor Interface Boundary Condition
At interface need π‘Œ 𝐴,𝑖 = 𝑀 𝐴 𝑀 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑁 𝐴 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ π‘€π‘Š 𝐴 π‘€π‘Š 𝑀𝑖π‘₯ = πœ’ 𝐴 π‘€π‘Š 𝐴 π‘€π‘Š 𝑀𝑖π‘₯ π‘€π‘Š 𝑀𝑖π‘₯ = 𝑀 π‘‡π‘œπ‘‘π‘Žπ‘™ 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑁 𝐴 π‘€π‘Š 𝐴 + 𝑁 𝐡 π‘€π‘Š 𝐡 𝑁 π‘‡π‘œπ‘‘π‘Žπ‘™ = πœ’ 𝐴 π‘€π‘Š 𝐴 + 1βˆ’ πœ’ 𝐴 π‘€π‘Š 𝐡 So π‘Œ 𝐴,𝑖 = πœ’ 𝐴 π‘€π‘Š 𝐴 πœ’ 𝐴 π‘€π‘Š 𝐴 + 1βˆ’ πœ’ 𝐴 π‘€π‘Š 𝐡 = πœ’ 𝐴 βˆ’1 π‘€π‘Š 𝐡 π‘€π‘Š 𝐴 ; need πœ’ 𝐴 πœ’ 𝐴 = 𝑃 𝐴 𝑃 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑃 𝐴,π‘†π‘Žπ‘‘ 𝑃 𝑃 𝐴,π‘†π‘Žπ‘‘ =𝑓𝑛(𝑇) Saturation pressure at temperature T For water, tables in thermodynamics textbook Or use Clausius-Clapeyron Equation (page 18 eqn. 2.19) A+B Vapor π‘Œ 𝐴,𝑖 Liquid A

9 Clausius-Clapeyron Equation (page 18)
Relates saturation pressure at a given temperature to the saturation conditions at another temperature and pressure 𝑃 1 𝑃 2 𝑑𝑃 π‘†π‘Žπ‘‘ 𝑃 π‘†π‘Žπ‘‘ = β„Ž 𝑓𝑔 𝑅 𝑇 1 𝑇 2 𝑑𝑇 π‘†π‘Žπ‘‘ 𝑇 π‘†π‘Žπ‘‘ 2 ; β„Ž 𝑓𝑔 =β„Žπ‘’π‘Žπ‘‘ π‘œπ‘“ π‘£π‘Žπ‘π‘œπ‘Ÿπ‘–π‘§π‘Žπ‘‘π‘–π‘œπ‘› (page 701 for fuels) ln 𝑃 2 𝑃 1 = β„Ž 𝑓𝑔 𝑅 βˆ’ 1 𝑇 𝑇 1 𝑇 2 = β„Ž 𝑓𝑔 𝑅 1 𝑇 1 βˆ’ 1 𝑇 2 Let 𝑇 1 = 𝑇 π΅π‘œπ‘–π‘™ and 𝑃 1 = 𝑃 π΅π‘œπ‘–π‘™ =1 π‘Žπ‘‘π‘š (tabulated for fuels on page 701) Let 𝑃 2 = 𝑃 π‘†π‘Žπ‘‘ that we are tying to find at temperature 𝑇 2 =T ln 𝑃 π‘†π‘Žπ‘‘ 𝑃 π΅π‘œπ‘–π‘™ = β„Ž 𝑓𝑔 𝑅 1 𝑇 π΅π‘œπ‘–π‘™ βˆ’ 1 𝑇 πœ’ 2 = 𝑃 π‘†π‘Žπ‘‘ 𝑃 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑃 π΅π‘œπ‘–π‘™ 𝑃 π‘‡π‘œπ‘‘π‘Žπ‘™ 𝑒π‘₯𝑝 β„Ž 𝑓𝑔 π‘€π‘Š 𝑅 𝑒 𝑇 π΅π‘œπ‘–π‘™ βˆ’ 1 𝑇 If given 𝑇 π΅π‘œπ‘–π‘™ , 𝑃 π΅π‘œπ‘–π‘™ , β„Ž 𝑓𝑔 π‘Žπ‘›π‘‘ 𝑇, we can use this to find 𝑃 π‘†π‘Žπ‘‘ Page 701, Table B: β„Ž 𝑓𝑔 , 𝑇 π΅π‘œπ‘–π‘™ at 𝑃 π΅π‘œπ‘–π‘™ =1 π‘Žπ‘‘π‘š

10 Problem 3.9 Consider liquid n-hexane in a 50-mm-diameter graduated cylinder. Air blows across the top of the cylinder. The distance from the liquid- air interface to the open end of the cylinder is 20 cm. Assume the diffusivity of n-hexane is 8.8x10-6 m2/s. The liquid n-hexane is at 25Β°C. Estimate the evaporation rate of the n-hexane. (Hint: review the Clausius-Clapeyron relation applied in Example 3.1)

11

12 Stefan Problem (no reaction)
x One dimensional tube (Cartesian) Gas B is stationary π‘š 𝐡 " =0 but has a concentration gradient Diffusion of B down = advection up π‘š 𝐡 " =0= π‘Œ 𝐡 π‘š 𝐴 " + π‘š 𝐡 " βˆ’πœŒ π’Ÿ 𝐡𝐴 𝑑 π‘Œ 𝐡 𝑑π‘₯ π‘Œ 𝐡 π‘š 𝐴 " =𝜌 π’Ÿ 𝐡𝐴 𝑑 π‘Œ 𝐡 𝑑π‘₯ π‘š 𝐴 " =π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘ π‘š 𝐴 " 𝜌 π’Ÿ 𝐡𝐴 𝑑π‘₯= 𝑑 π‘Œ 𝐡 π‘Œ 𝐡 ; π‘š 𝐴 " 𝜌 π’Ÿ 𝐡𝐴 0 π‘₯ 𝑑π‘₯ = π‘Œ 𝐡,𝑖 π‘Œ 𝐡 (π‘₯) 𝑑 π‘Œ 𝐡 π‘Œ 𝐡 π‘š 𝐴 " π‘₯ 𝜌 π’Ÿ 𝐡𝐴 = ln π‘Œ 𝐡 (π‘₯) π‘Œ 𝐡,𝑖 ; π‘Œ 𝐡 (π‘₯)= π‘Œ 𝐡,𝑖 𝑒 π‘š 𝐴 " 𝜌 π’Ÿ 𝐡𝐴 π‘₯ π‘Œ 𝐴,∞ L- YB YA Y YA,i

13 Clausius-Clapeyron Equation (page 18)
Relates saturation pressure at a given temperature to the saturation conditions at another temperature and pressure 𝑃 1 𝑃 2 𝑑𝑃 π‘†π‘Žπ‘‘ 𝑃 π‘†π‘Žπ‘‘ = β„Ž 𝑓𝑔 𝑅 𝑇 1 𝑇 2 𝑑𝑇 π‘†π‘Žπ‘‘ 𝑇 π‘†π‘Žπ‘‘ 2 ln 𝑃 2 𝑃 1 = β„Ž 𝑓𝑔 𝑅 βˆ’ 1 𝑇 𝑇 1 𝑇 2 = β„Ž 𝑓𝑔 𝑅 1 𝑇 1 βˆ’ 1 𝑇 2 ; 𝑃 2 𝑃 1 =𝑒π‘₯𝑝 β„Ž 𝑓𝑔 𝑅 𝑇 1 βˆ’ 1 𝑇 2 πœ’ 2 = 𝑃 2 𝑃 π‘‡π‘œπ‘‘π‘Žπ‘™ = 𝑃 1 𝑃 π‘‡π‘œπ‘‘π‘Žπ‘™ 𝑃 2 𝑃 1 = 𝑃 1 𝑃 π‘‡π‘œπ‘‘π‘Žπ‘™ 𝑒π‘₯𝑝 β„Ž 𝑓𝑔 𝑅 𝑇 1 βˆ’ 1 𝑇 2 If given 𝑇 1 , 𝑃 1 , β„Ž 𝑓𝑔 π‘Žπ‘›π‘‘ 𝑇 2 , we can use this to find 𝑃 1 Page 701, Table B: β„Ž 𝑓𝑔 , 𝑇 π΅π‘œπ‘–π‘™ = 𝑇 π‘†π‘Žπ‘‘ = 𝑇 1 at P = 1 atm = 𝑃 1


Download ppt "ME 475/675 Introduction to Combustion"

Similar presentations


Ads by Google