Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mechanical Loss in Silica substrates

Similar presentations


Presentation on theme: "Mechanical Loss in Silica substrates"β€” Presentation transcript:

1 Mechanical Loss in Silica substrates
Jonathan Newport American University Gregg Harry, Raymond Robie, David Belyea, Matt Abernathy LIGO-G LVC Meeting Bethesda, MD March 18th 2013

2 Introduction Thermal noise from internal degrees of freedom of interferometer test masses is a limiting noise source in the sensitive mid-frequency bands. Must quantify mechanical loss in both Silica Substrate and Coating Layers. Brownian Thermal Fluctuations arise from: Thickness fluctuations of coating layers caused by bulk and shear fluctuations. Interface fluctuations caused by bulk and shear fluctuations. Refractive index fluctuations caused by thickness fluctuations.

3 History: Old Formalism for Loss
β€œThermal noise in interferometric gravitational wave detectors due to dielectric optical coatings” [Harry, et al., Classical & Quantum Gravity, 19 (2002) ] Derives thermal noise power spectrum in terms of πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ and coating losses πœ™ βˆ₯ and πœ™ βŠ₯ . Assuming 𝜎= 𝜎 β€² =0, 𝑆 π‘₯ 𝑓 = 1 π‘€π‘Œ 2 π‘˜ 𝐡 𝑇 𝑓 πœ‹ πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ πœ‹ 𝑑 𝑀 π‘Œβ€² π‘Œ πœ™ βˆ₯ + π‘Œ π‘Œβ€² πœ™ βŠ₯ Finding πœ™ βˆ₯ , 1 𝑄 =πœ™= π‘ˆ π‘†π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ π‘ˆ βˆ₯ π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ βˆ₯ Measured Calculated -loss associated with energy density in parallel (transverse) coating strains as phi_|| (r and theta directions) -loss associated with energy density in perpendicular (longitudinal) coating strains as phi_perp (z direction) -Ringdowns to measure Q and phi -Energy ratios calculated analytically or via a FEA Finding πœ™ βŠ₯ …??? Assumes πœ™ βˆ₯ = πœ™ βŠ₯

4 Impetus: New Formalism for Loss
β€œBrownian Thermal Noise in Multilayer Coated Mirrors” [Hong, et al, LIGO-G v1, Submitted to Phys. Rev. D] πœ™ βˆ₯ and πœ™ βŠ₯ formalism of Harry, et al. can lead to erroneous values – require new formalism. When applying a force with known pressure profile: π‘ˆ π‘π‘œπ‘Žπ‘‘π‘–π‘›π‘” = π‘ˆ 𝐡 + π‘ˆ 𝑆 = π‘π‘œπ‘Žπ‘‘π‘–π‘›π‘” 𝐾 2 Θ 2 +πœ‡ Ξ£ 𝑖𝑗 Ξ£ 𝑖𝑗 𝑑𝑉 New formalism for mechanical loss in coating starting from elastic energy contained in bulk energy π‘ˆ 𝐡 and shear energy π‘ˆ 𝑆 . πœ™ π‘π‘œπ‘Žπ‘‘π‘’π‘‘ = π‘ˆ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ + π‘ˆ 𝐡 π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ 𝐡 + π‘ˆ 𝑆 π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ 𝑆 loss in coating Without a coating, should be able to extend this analysis to bulk and shear loss in substrate πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ = π‘ˆ 𝐡,𝑆𝑒𝑏 π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ 𝐡,𝑆𝑒𝑏 + π‘ˆ 𝑆,𝑆𝑒𝑏 π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ 𝑆,𝑆𝑒𝑏

5 Measurement Techniques: FEA
A finite element analysis of an uncoated silica sample is used to find its approximate resonance frequencies. -Specific Geometry π‘“β‰ˆ6102Hz π‘“β‰ˆ9354Hz

6 Measurement Techniques: Hanging Sample
-Specific Geometry

7 Measurement Techniques: Bell Jar Upgrade

8 Measurement Techniques: Birefringence Sensor

9 Measurement Techniques: Mode Hunting
Matlab Instrument Control Network/Signal Analyzer Matlab + Waveform Generator + Lockin Amplifer allows for complete control of all sweep parameters: input filter bandwidth, step time and step size down to 1Β΅Hz.

10 Measurement Techniques: Ringdowns
𝝓 𝒔𝒖𝒃𝒔𝒕𝒓𝒂𝒕𝒆 𝐴= 𝐴 0 𝑒 βˆ’ πœ™ πœ” 0 𝑑 Once a mode is found,

11 Measurement Techniques: Q Results
Sample Mode Freq [Hz] Q Sample 24 2706.5 2.009Γ—107 6162.4 1.47Γ—107 9445.8 5.49Γ—106 Sample 25 2699.2 1.9Γ—107 6149.6 1.89Γ—107 9438.3 1.326Γ—107 10,612.5 7.66Γ—106 Sample 26 2758.1 1.911Γ—107 4163.2 8.88Γ—106 37,039.1 1.488Γ—107 Once a mode is found,

12 Analysis: Return to FEA with New Formalism
Elastic energy can be divided into bulk energy π‘ˆ 𝐡 and shear energy π‘ˆ 𝑆 when applying a force with a known pressure profile, π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ = π‘ˆ 𝐡,𝑆𝑒𝑏 + π‘ˆ 𝑆,𝑆𝑒𝑏 = 𝑆𝑒𝑏 𝐾 2 Θ 2 +𝐺 Ξ£ 𝑖𝑗 Ξ£ 𝑖𝑗 𝑑𝑉 Shear: Bulk: Ξ£ 𝑖𝑗 = 𝑆 𝑖𝑗 + 𝑆 𝑗𝑖 βˆ’ 1 3 𝛿 𝑖𝑗 Θ Θ= 𝑆 11 + 𝑆 22 + 𝑆 33 -K is the Bulk Modulus -G is the Shear Modulus -S is the 3x3 strain tensor FEA πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ = π‘ˆ 𝐡,𝑆𝑒𝑏 π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ 𝐡,𝑆𝑒𝑏 + π‘ˆ 𝑆,𝑆𝑒𝑏 π‘ˆ π‘‡π‘œπ‘‘π‘Žπ‘™ πœ™ 𝑆,𝑆𝑒𝑏

13 Analysis: FEA Energy Ratios

14 Preleminary Results Bulk and Shear loss can be then be calculated:
πœ™ π‘Ž πœ™ 𝑏 = π‘ˆ π‘Ž,π΅π‘’π‘™π‘˜ π‘ˆ π‘Ž,π‘‡π‘œπ‘‘ π‘ˆ π‘Ž,π‘†β„Žπ‘’π‘Žπ‘Ÿ π‘ˆ π‘Ž,π‘‡π‘œπ‘‘ π‘ˆ 𝑏,π΅π‘’π‘™π‘˜ π‘ˆ 𝑏,π‘‡π‘œπ‘‘ π‘ˆ 𝑏,π‘†β„Žπ‘’π‘Žπ‘Ÿ π‘ˆ 𝑏,π‘‡π‘œπ‘‘ πœ™ π΅π‘’π‘™π‘˜ πœ™ π‘†β„Žπ‘’π‘Žπ‘Ÿ Sample 26 𝝓 π‘©π’–π’π’Œ 𝝓 𝑺𝒉𝒆𝒂𝒓 1.96Γ— 10 βˆ’7 4.24Γ— 10 βˆ’8 1.67Γ— 10 βˆ’7 6.66Γ— 10 βˆ’8 Can be found using two modes, ideally with different shear/bulk energy ratios Note that we lose frequency information! (or it’s buried, at least)

15 β€œFrequency and surface dependence of mechanical loss in fused silica”
[Penn, et al., Physics Letters A, 352 (2006) 3-6] Shows that mechanical loss of silica substrate πœ™ π‘ π‘’π‘π‘ π‘‘π‘Ÿπ‘Žπ‘‘π‘’ depends on frequency and surface-to-volume ratio. πœ™ 𝑓, 𝑉 𝑆 = πœ™ π‘ π‘’π‘Ÿπ‘“ + πœ™ π‘£π‘œπ‘™ + πœ™ π‘‘β„Ž = 𝐢 1 𝑉 𝑆 βˆ’1 + 𝐢 2 𝑓 (1Hz) 𝐢 3 + 𝐢 4 πœ™ π‘‘β„Ž Type C1 (pm) C2 (Γ—10-11) C3 C4 Suprasil 2 12.1 1.18 0.77 0.61 -Contribution of surface loss is dependent on surface to volume ratio and is mode dependent C1=\mu\alpha_s where \mu depends on mode shape and \alpha_s is surface loss parameter. Frequency dependence of loss agrees well with results of modeling asymmetric double-well potential in Si-O-Si bond angle. [Weidersich, et al., Phys. Rev. Lett. 84 (2000) 2718] Type C3 Suprasil 300 β‰ˆ0.75

16 Still Lots to Do! Frequency Dependence πœ™(𝑓):
More Data Pairs – easier to probe higher order modes with wideband HV Amplifier and computer control Design second sample with different energy ratios, but similar mode frequencies Include dependence of loss on Surface to Volume ratio in analysis πœ™ 𝑉 𝑆 Include Shear/Bulk loss in Surface analysis Compare to other theoretical models (Hai Ping Cheng, etc.) Annealing More modes, reanalyzing old data HV amp good to 125kHz for large signals πœ™ 𝑓, 𝑉 𝑆 = πœ™ π‘ π‘’π‘Ÿπ‘“ + πœ™ π‘£π‘œπ‘™ πœ™ 𝑓, 𝑉 𝑆 = πœ™ π‘ π‘’π‘Ÿπ‘“,𝐡 + πœ™ π‘ π‘’π‘Ÿπ‘“,𝑆 + πœ™ π‘£π‘œπ‘™,𝐡 + πœ™ π‘£π‘œπ‘™,𝑆


Download ppt "Mechanical Loss in Silica substrates"

Similar presentations


Ads by Google