Presentation is loading. Please wait.

Presentation is loading. Please wait.

Neutrino Physics & Astrophysics : Overview

Similar presentations


Presentation on theme: "Neutrino Physics & Astrophysics : Overview"— Presentation transcript:

1 Neutrino Physics & Astrophysics : Overview
Neutrino Physics: WHY & HOW Highlights : solar neutrinos (+ atm. n) Highlights : Future Projects TEXONO research program in Taiwan Experimentalists Theorist Henry T. Wong / 王子敬 Academia Sinica / 中央研究院 @ NTHU / 國立清華大學 October 2002

2 Nobel Prize in Physics (2002) 50% for n astrophys. :
Ray. Davis Jr. (U. Penn) : “Classic” Chlorine Expt. Masatoshi Koshiba (U. Tokyo) : Kamiokande & SuperK Citations leave room for future prizes on n physics !!! 50% to Riccardo Giacconi, in X-Ray Astronomy

3

4 Neutrino Physics Road-Map
Grand Unified Theories (GUT) L(n-mass)0 Structures & Compositions of Universe mn’s;Uij’s 0 n-Oscil. mn’s n-decays 0nbb b-spect.dist. anomal. int. ………. Particle Physics Cosmology Nuclear Physics Astrophysics n’s as Probe

5 Neutrino Physicist :

6 Neutrino History 1914: continuous b-spectra (Chadwick)
1930: postulation of neutrinos (Pauli) 1934: theory of b-decay (Fermi) calculation of s(np) (Bethe,Peierls) 1956: observartion reactor ne (Reines,Cowan) 1957: measurement of n helicity (Goldhaber) 1962: discovery of accelerator nm (BNL) 1968: observation of solar neutrinos (Davis) 1974: discovery of weak neutral currents (CERN) 1987: observation of supernova SN1987a n’s (IMB,Kamiokande) 1989: three families of light neutrinos (CERN) 1998: evidence of atmospheric neutrino oscillation (Super-Kam., …) 2000: observation of nt (Fermilab) 2001: evidence solar neutrino oscillation (SNO+SK+GALLEX ……)

7 Neutrino Sources n‘s everywhere: 300 per c.c.
Observed window n‘s everywhere: 300 per c.c. from sun, supernovae, cosmic rays, reactors, accelerators, astrophysical sources, & relic Big Bang …

8 Cross Sections Challenges of Neutrino Experiments :
Strong Electro-magnetic Weak  l(H2O)  250 light years ! Challenges of Neutrino Experiments : “How to Beat the Small Cross-Section?” i.e. By building Massive Detectors  while keeping cost/background Low !

9 Super-Kamionkande ※ Water Cerenkov detector: 5k tons, viewed by 11,000+ =50 cm PMTs in 1000 m underground site in central Japan ※ Physics: solar n, atmospheric n , long baseline accelerator n, proton decays .. ※ Accidents (PMTs imploded) Nov 01, 50% PMT data again end of 02 !!!

10 Atmospheric Neutrinos
nm disappearing, ne OK, Strong evidence : > 15s Better fits for nt appearing e n n

11 Solar Neutrinos

12 Measurement of Eccentricity of Earth’s Orbit !!!
The Sun IS Burning !!

13 Sudbury Neutrino Observatory (SNO)
※ Heavy Water Cerenkov detector: 1k ton, shielded by 7k ton of water viewed by 9456 PMTs located 2000 m underground in Canada. ※ Physics: Solar n …

14 Actual measurements : only detect e- (a burst of light) : deconvolute the channels

15 (also Cl, Ga, diff. E) (also SK) ( 5s effect )

16 Three Families of Neutrino Mixing
The Maki-Nakagawa-Sakata (MNS) matrix : atmospheric solar Possible CP Violation in n Sector:

17

18 Dm2 –  : Summary PDG 2000: 2002

19 KEK-SuperK (K2K) Accelerator n Flight path 250 km
Goals : confirm SK atm. n results, measure 23 First results consistent with SK 2006+ , evolve to JHFSK

20 KamLAND Long Baseline Reactor n (sensitive to 20% of world’s reactors !) ave. flight path of 160 km 1 kton liquid scintillator in old Kamiokande site probe “LMA” for solar n first results “any time” (only 5 years from approved !!!!)

21 Fermilab: NuMI to MINOS (2004+)
CERN: CNGS to Gran Sasso (2006+) Both with 750 km baseline accelerator n beams Precision measurement of atm. n’s q23 Explicit observation of nt

22 IceCube – km3 n Telescope
※ To detect high energy n’s South Pole AMANDA IceCube

23 Neutrino Factory with Muon Storage Ring
ne & nm + anti-n’s, control & selectable intense source known spectra precision measurements of Dm2 and ij search of CP violation need O(1000 km) baseline BIG projects !!!

24 TEXONO* Collaboration
W.C. Chang¶, C.P. Chen, K.C. Cheng, H.C. Hsu, F.S. Lee, S.C. Lee, S.T. Lin, D.S. Su, P.K. Teng, W.S. Tse¶, H.T.K. Wong†, C.S. Wu, S.C. Wu Academia Sinica, Taipei, Taiwan W.P. Lai Chung Kuo Institute of Technology, Taipei, Taiwan C.H. Hu, J.M. Huang, W.S. Kuo, T.R. Yeh Institute of Nuclear Energy Research, Lungtan, Taiwan H.B. Li, M.Z. Wang¶ National Taiwan University, Taipei, Taiwan J.H. Chao, J.H. Liang National Tsing Hua University, Hsinchu, Taiwan Z.M. Fang, R.F. Su Nuclear Power Station II, Kuosheng, Taiwan M. He, S. Jiang, L. Hou, H.Q. Tang, B. Xin, Z.Y. Zhou¶ Institute of Atomic Energy, Beijing, China J. Li†, Y. Liu, Z.P. Mao, J. Nie, J.F. Qiu, H.Y. Sheng, P.L. Wang, X.W. Wang, Q. Yue, D.X. Zhao, J.W. Zhao, P.P. Zhao, S.Q. Zhao, B.A. Zhuang Institute of High Energy Physics, Beijing, China Z.S. Liu, Z.Y. Zhang Institute of Radiation Protection, Taiyuan, China T.Y. Chen Nanjing University, Nanjing, China J.P. Cheng, D.Z. Liu Tsing Hua University, Beijing, China C.Y. Chang, G.C.C. Chang† University of Maryland, Maryland, U.S.A. † Co-Prinicipal Investigators ¶ Project Leaders Ph.D. Students *Taiwan EXperiement On NeutrinO Home HISTORY Initiate : Chang Chung-Yung 1996 First Collab. Meeting/Official Start : October 1997 First Paper : October 1998 KS Reactor Experiment Installation : June 2000 First Ph.D. : Liu Yan , July 2000 First Physics Data Taking : June 2001.

25 TEXONO Overview Goals : Program: Neutrino and Astroparticle Physics
 Starting phase: 1st particle physics expt in Taiwan Build up a Qualified Group  1st big research Coll. % Taiwan & China Kuo-Sheng Reactor Neutrino Lab. ※ reactor : high flux of low energy electron anti-neutrinos ※ mn0  anomalous n properties & interactions ※ n’s strange & full of surprises  study/constraint new regime wherever possible experimentally R&D Projects  diversified program ※ reactor program as base ※ explore various future scenarios Program:

26 Kuo-Sheng Nuclear Power Plant
KS NPS-II : 2 cores X 2.9 GW KS n Lab: 28 m from core#1

27 Kuo-Sheng Neutrino Laboratory
High flux of ne (also ….. ne ) Modular Design : independent detector, electronics, shielding high-Z target, large re Improved detector performance:  good energy & spatial resolution,  low threshold, a/g separation Elaborate electronics+DAQ+control sys.  complete record of pulse shape + timing info. Elaborate Shieldings  radon purge & 4p cosmic veto Configuration: Modest yet Unique Flexible Design: Allows different detectors conf. for different physics

28 Kuo Sheng Reactor Neutrino Laboratory
Front Gate Front View (cosmic vetos, shieldings, control room …..) Inner Target Volume

29 ULB-HPGe + Anti-Comptons
KS Expt. : Period I Configuration Period I : June 01 – April 02 (60 days OFF) Shielding & Veto [one side] ULB-HPGe + Anti-Comptons CsI(Tl) Array (46 kg)

30 KS Expt: Period I Detectors
ULB-HPGe [1 kg] CsI(Tl) [46 kg] FADC Readout [16 ch., 20 MHz, 8 bit] Multi-Disks Array [600 Gb]

31 mn with Reactor ne mn Experimental Probe:
 parametrize possible niL njR + g vertices   both i = j “diagonal” & i  j “transition” moments Experimental Probe:  Study ne + e-  nX + e-  Focus on low recoil energy ※ sm  T–1 ※ decouples SM “background” [ ……… LE reactor f(ne) not accurately known]  Look for Excess in Reactor ON/OFF Neutrino Radiative Decay (Gn):  sm & Gn related:  same vertices – real g for Gn Electron Recoil Spectra

32 Reactor mn(ne) Sensitivities
Gn Sensitivities

33 KS/P1 Analysis HPGe : exploit the low threshold data
Established Problem: mn and Gn for ne via : ne + e  nx + e Speculative Analysis: ※ study ne flux from reactor  due to neutron excitation producing e.g. 51Cr, 55Fe [distinct energy & timing …..]  study mn & Gn for ne ※ anomalous Neutrino Interactions in Matter e.g. anomalous energy deposition X (>eV) ne + N  nx + N + X [similar analysis as accelerator nm] ※ study possible nuclear transitions e.g. 73Ge* decays by 2g’s separated by t1/2=4.6 ms CsI(Tl) : Technical Run Event Reconstruction Background Studies Optimize for P2

34 CsI(Tl) Array : Highlights
40 cm length (longest commercial prod.) Energy+3D info:  10% FWHM at 660 keV  s(z) <2 cm @ E>250 keV Detector Threshold ~ 20 keV PSD for g/a : > 99% Intrinsic Purity :  238U/232Th < g/g (equil.)  40K < g/g cosmic muon events 46 kg target Goals: Commission 180+ kg target on-site for Period-II DAQ with large dynamic range

35 KS Expt.: Future Thoughts
Existing configurations:  push mn/Gn sensitivities  s(ne–e) scatterings  analysis opened up by low threshold Push threshold lower ( X 1/10 )  coherent nN scattering [ observe SM + test exotic processes….] Insert passive targets for s(nucl.) e.g. 6Li, 7Li, 10B, 11B,2H ..  s(NC) related to axial isoscalar & strange quark structure in nucleon As base to launch other projects  explored by R&D program

36 R&D Projects Upgrading FADCs
Explore New Detectors Scenarios  loaded crystal scintillator  ultra low energy HPGe CsI(Tl) for Dark Matter Searches Upgrading FADCs Trace Radio-purity with AMS ( Accelerator Mass Spectrometry) Sono-Luminescence Project Close Contact with :  CsI(Tl) CDM Korea  JHFBeijing LBL n IHEP  Ultra HE (1015 eV) n NTU

37 Status: TEXONO Collaboration: Kuo-Sheng Neutrino Lab.:
 Built-Up and Growing Kuo-Sheng Neutrino Lab.:  Established & Operational ※Modular & Flexible Design  Physics Data Taking since June 01 ※Unique HPGe Low Energy Data ※ Bkg Level ~ Underground CDM Expt. Expect Results on mn (Gn) soon ※ Other speculative analyses under way Preparation of Period-II DAQ  Improved HPGe Conf.  Commissioning 150+ kg CsI(Tl) [+ s(ne) …] Diversified R&D Program in parallel

38 Summary & Outlook Neutrinos are important but strange objects
history of n physics full of surprises ! Strong evidenceS of massive n’s & finite mixings Physics Beyond the Standard Model ! More experiments & projects coming up EVEN MORE EXCITEMENT ! TEXONO is also a (modest) part of it


Download ppt "Neutrino Physics & Astrophysics : Overview"

Similar presentations


Ads by Google