Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dipartimento di Astronomia Università di Bologna

Similar presentations


Presentation on theme: "Dipartimento di Astronomia Università di Bologna"— Presentation transcript:

1 Dipartimento di Astronomia Università di Bologna
Modelling the cosmological co-evolution of supermassive black holes and galaxies Federico Marulli Collaborators: Lauro Moscardini (Università di Bologna) Enzo Branchini (Università Roma Tre) Silvia Bonoli, Volker Springel, Simon D. M. White (Max-Planck-Institut fuer Astrophysik, Garching) Dipartimento di Astronomia Università di Bologna

2 Contents Aim of the study:
Modelling the co-evolution of supermassive black holes and galaxies in the ΛCDM cosmology Understanding the role of the AGN feedback in the evolution of galaxies and clusters Working strategy: Hybrid models: dark halos (N-body) + galaxies + BHs Observational data: BH scale relation and fundamental plane BH mass function AGN luminosity function AGN clustering function Federico Marulli Torino: May 2008

3 Hybrid models: DM + galaxies + BH
Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Millennium Simulation GADGET-2 code (Springel 2005), at the Computing Centre of the Max-Planck Society in Garching, Germany Dynamical evolution of ≃ 1e10 DM particles with mass 8.6x1e8 Msun/h in a periodic box of 500 Mpc/h on a side, in a LCDM “concordance” cosmological framework (2-degree Field Galaxy Redshift Survey (2dFGRS) (Colless et al. 2001) and first-year WMAP data (Spergel et al. 2003), as shown by Sanchez et al. (2006)) Mass resolution: DM halo of 0.1L⋆ galaxies with ~ 100 particles Spatial resolution: co-moving scale of 5 kpc/h Hierarchical merging trees extracted from this simulation DM haloes and subhalos identified with, respectively, a friends-of-friends (FOF) group-finder and an extended version of the SUBFIND algorithm (Springel et al. 2001) Federico Marulli Torino: May 2008

4 Hybrid models: DM + galaxies + BH
Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Croton, Springel, White, De Lucia, Frenk, Gao, Jenkins, Kauffmann, Navarro, Yoshida 2006 De Lucia–Blaizot 2007 Gas cooling (White-Frenk 1991, Springel et al. 2001): Photon-ionization heating (Kravtzov et al. 2004): Star formation (Kauffmann 1996): Gas reated by supernovae: Energy released by supernovae: Disk instability (Mo et al. 1998): Fraction of gas turned into stars after a merger (Cox 2004): Federico Marulli Torino: May 2008

5 Hybrid models: DM + galaxies + BH
Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M quasar mode: radio mode: Federico Marulli Torino: May 2008 Croton et al. 2006, De Lucia-Blaizot 2007

6 BH scale relations at z=0
Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Black dots : observations Black dashed lines : best fit to the observational datasets Red dots : model output Blue solid lines : fit to the model prediction * K- and B-band bulge magnitude :Marconi et al. (2004) * sigma: Ferrarese & Ford (2005) * Mbulge: Haring & Rix (2004) * Vc: Baes et al. (2003) * Mbh: Ferrarese (2002) equations 4 (cyan), 6 (green) and 7 (magenta) and Baes et al. (2003) (red) Federico Marulli Torino: May 2008

7 Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M
BH fundamental plane Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Black dashed lines: Hopkins et al. (2007) Red dots: model outputs Blue solid lines: best-fits to the model outputs The galaxy stellar mass is given in units of 1e11 Msun, the bulge velocity dispersion is in units of 200 km/s Federico Marulli Torino: May 2008

8 Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M
BH mass function Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Federico Marulli Torino: May 2008

9 AGN luminosity function
Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Optical: Kennefick et al. 1995; Schmidt et al. 1995; Koehler et al. 1997; Grazian et al. 2000; Fan et al. 2001; Wolf et al. 2003; Hunt et al. 2004; Cristiani et al. 2004; Croom et al. 2005; Richards et al. 2005, 2006; Siana et al. 2006; Fontanot et al. 2007; Shankar & Mathur 2007; Bongiorno et al. 2007 Infra-red: Brown et al. 2006; Matute et al. 2006; Babbedge et al. 2006 Soft X-ray: Miyaji et al. 2000, 2001; Silverman et al. 2005b; Hasinger et al. 2005 Hard X-ray: Barger et al. 2003; Ueda et al. 2003; Barger et al. 2003; Nandra et al. 2005; Sazonov & Revnivtsev 2004; Silverman et al. 2005a; La Franca et al. 2005; Shinozaki et al. 2006; Beckmann et al. 2006 Emission lines: Hao et al. 2005 Federico Marulli Torino: May 2008

10 AGN clustering function
Marulli, Branchini, Gilli, Moscardini, Bonoli in preparation CDFs AGN clustering: Gilli et al. 2005 Federico Marulli Torino: May 2008

11 Summary BH scaling relations BH fundamental plane BH mass function
Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M BH scaling relations BH fundamental plane BH mass function AGN luminosity function AGN clustering Federico Marulli Torino: May 2008

12 Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS.368.1269M
Summary Marulli, Bonoli, Branchini, Moscardini, Springel 2008, MNRAS M Galaxy luminosity function at z=0 Galaxy evolution - downsizig Cooling flows in clusters Croton et al. 2006 “Radio mode” BH feedback - Not triggered by mergers - Low z - High mass DM halos BH scaling relations BH mass functions AGN evolution – downsizing AGN clustering Marulli et al. 2008 Federico Marulli Torino: May 2008

13 Conclusions The end! …thanks!
The cosmological co-evolution of BHs, AGN and galaxies can be well described within the ΛCDM model At redshifts z>1, the evolution history of DM halo fully determines the overall properties of the BH and AGN populations. The AGN emission is triggered mainly by DM halo major mergers and, on average, AGN shine at their Eddington luminosity The cold gas fraction accreted by BHs at high redshifts seems to be larger than at low redshifts At redshifts z<1, BH growth decouples from halo growth. Galaxy major mergers cannot constitute the only trigger to accretion episodes in this phase When a static hot halo has formed around a galaxy, a fraction of the hot gas continuously accretes onto the central BH, causing a low-energy “radio'' activity at the galactic centre, which prevents significant gas cooling and thus limiting the mass of the central galaxies and quenching the star formation at late time The end! …thanks! Federico Marulli Torino: May 2008


Download ppt "Dipartimento di Astronomia Università di Bologna"

Similar presentations


Ads by Google