Download presentation
Presentation is loading. Please wait.
Published byDrusilla Olivia Stewart Modified over 6 years ago
1
Computer Network Welcome! Fall 2017 Computer Science and Engineering
2
Mohammed Ashikur Rahman University of South Asia
Computer Network CODE # : MS – 631 LECTURER : Mohammed Ashikur Rahman BSc, MSc (UK) University of South Asia
3
LECTURER’S INFORMATION
Office’s venue : Banani Campus Office’s Tel # :
4
ASSESSMENT The Final Grade will be calculated as follows:
Attendance => % Presentation => % Assignment or quiz => % Midterm Examination => 30 % Final Examination => 40 % Total => 100%
5
Computer Networks COMPUTER NETWORKS
6
Introduction to Computer Networks
Computer network connects two or more autonomous computers. The computers can be geographically located anywhere.
7
Introduction to Computer Networks
LAN, MAN & WAN Network in small geographical Area (Room, Building or a Campus) is called LAN (Local Area Network) Network in a City is call MAN (Metropolitan Area Network) Network spread geographically (Country or across Globe) is called WAN (Wide Area Network)
8
Applications of Networks
Introduction to Computer Networks Applications of Networks Resource Sharing Hardware (computing resources, disks, printers) Software (application software) Information Sharing Easy accessibility from anywhere (files, databases) Search Capability (WWW) Communication Message broadcast Remote computing Distributed processing (GRID Computing)
9
Introduction to Computer Networks
Network Topology The network topology defines the way in which computers, printers, and other devices are connected. A network topology describes the layout of the wire and devices as well as the paths used by data transmissions.
10
Introduction to Computer Networks
Bus Topology Commonly referred to as a linear bus, all the devices on a bus topology are connected by one single cable.
11
Introduction to Computer Networks
Star & Tree Topology The star topology is the most commonly used architecture in Ethernet LANs. When installed, the star topology resembles spokes in a bicycle wheel. Larger networks use the extended star topology also called tree topology. When used with network devices that filter frames or packets, like bridges, switches, and routers, this topology significantly reduces the traffic on the wires by sending packets only to the wires of the destination host.
12
Introduction to Computer Networks
Ring Topology A frame travels around the ring, stopping at each node. If a node wants to transmit data, it adds the data as well as the destination address to the frame. The frame then continues around the ring until it finds the destination node, which takes the data out of the frame. Single ring – All the devices on the network share a single cable Dual ring – The dual ring topology allows data to be sent in both directions.
13
Introduction to Computer Networks
Mesh Topology The mesh topology connects all devices (nodes) to each other for redundancy and fault tolerance. It is used in WANs to interconnect LANs and for mission critical networks like those used by banks and financial institutions. Implementing the mesh topology is expensive and difficult.
14
Network Components Physical Media Interconnecting Devices Computers
Introduction to Computer Networks Network Components Physical Media Interconnecting Devices Computers Networking Software Applications
15
Introduction to Computer Networks
Networking Media Networking media can be defined simply as the means by which signals (data) are sent from one computer to another (either by cable or wireless means).
16
Introduction to Computer Networks
Networking Devices HUB, Switches, Routers, Wireless Access Points, Modems etc.
17
Computers: Clients and Servers
Introduction to Computer Networks Computers: Clients and Servers In a client/server network arrangement, network services are located in a dedicated computer whose only function is to respond to the requests of clients. The server contains the file, print, application, security, and other services in a central computer that is continuously available to respond to client requests.
18
Networking Protocol: TCP/IP
Introduction to Computer Networks Networking Protocol: TCP/IP
19
Applications E-mail Searchable Data (Web Sites) E-Commerce News Groups
Introduction to Computer Networks Applications Searchable Data (Web Sites) E-Commerce News Groups Internet Telephony (VoIP) Video Conferencing Chat Groups Instant Messengers Internet Radio
20
OSI Model OSI MODEL
21
Communication Architecture
OSI Model Communication Architecture Strategy for connecting host computers and other communicating equipment. Defines necessary elements for data communication between devices. A communication architecture, therefore, defines a standard for the communicating hosts. A programmer formats data in a manner defined by the communication architecture and passes it on to the communication software. Separating communication functions adds flexibility, for example, we do not need to modify the entire host software to include more communication devices.
22
Layer Architecture Layer architecture simplifies the network design.
OSI Model Layer Architecture Layer architecture simplifies the network design. It is easy to debug network applications in a layered architecture network. The network management is easier due to the layered architecture. Network layers follow a set of rules, called protocol. The protocol defines the format of the data being exchanged, and the control and timing for the handshake between layers.
23
Open Systems Interconnection (OSI) Model
International standard organization (ISO) established a committee in 1977 to develop an architecture for computer communication. Open Systems Interconnection (OSI) reference model is the result of this effort. In 1984, the Open Systems Interconnection (OSI) reference model was approved as an international standard for communications architecture. Term “open” denotes the ability to connect any two systems which conform to the reference model and associated standards.
24
OSI Model OSI Reference Model The OSI model is now considered the primary Architectural model for inter-computer communications. The OSI model describes how information or data makes its way from application programmes (such as spreadsheets) through a network medium (such as wire) to another application programme located on another network. The OSI reference model divides the problem of moving information between computers over a network medium into SEVEN smaller and more manageable problems . This separation into smaller more manageable functions is known as layering.
25
OSI Reference Model: 7 Layers
OSI Model OSI Reference Model: 7 Layers
26
OSI: A Layered Network Model
OSI Model OSI: A Layered Network Model The process of breaking up the functions or tasks of networking into layers reduces complexity. Each layer provides a service to the layer above it in the protocol specification. Each layer communicates with the same layer’s software or hardware on other computers. The lower 4 layers (transport, network, data link and physical —Layers 4, 3, 2, and 1) are concerned with the flow of data from end to end through the network. The upper four layers of the OSI model (application, presentation and session—Layers 7, 6 and 5) are orientated more toward services to the applications. Data is Encapsulated with the necessary protocol information as it moves down the layers before network transit.
27
OSI Model Physical Layer Provides physical interface for transmission of information. Defines rules by which bits are passed from one system to another on a physical communication medium. Covers all - mechanical, electrical, functional and procedural - aspects for physical communication. Such characteristics as voltage levels, timing of voltage changes, physical data rates, maximum transmission distances, physical connectors, and other similar attributes are defined by physical layer specifications.
28
OSI Model Data Link Layer Data link layer attempts to provide reliable communication over the physical layer interface. Breaks the outgoing data into frames and reassemble the received frames. Create and detect frame boundaries. Handle errors by implementing an acknowledgement and retransmission scheme. Implement flow control. Supports points-to-point as well as broadcast communication. Supports simplex, half-duplex or full-duplex communication.
29
OSI Model Network Layer Implements routing of frames (packets) through the network. Defines the most optimum path the packet should take from the source to the destination Defines logical addressing so that any endpoint can be identified. Handles congestion in the network. Facilitates interconnection between heterogeneous networks (Internetworking). The network layer also defines how to fragment a packet into smaller packets to accommodate different media.
30
OSI Model Transport Layer Purpose of this layer is to provide a reliable mechanism for the exchange of data between two processes in different computers. Ensures that the data units are delivered error free. Ensures that data units are delivered in sequence. Ensures that there is no loss or duplication of data units. Provides connectionless or connection oriented service. Provides for the connection management. Multiplex multiple connection over a single channel.
31
OSI Model Session Layer Session layer provides mechanism for controlling the dialogue between the two end systems. It defines how to start, control and end conversations (called sessions) between applications. This layer requests for a logical connection to be established on an end-user’s request. Any necessary log-on or password validation is also handled by this layer. Session layer is also responsible for terminating the connection. This layer provides services like dialogue discipline which can be full duplex or half duplex. Session layer can also provide check-pointing mechanism such that if a failure of some sort occurs between checkpoints, all data can be retransmitted from the last checkpoint.
32
OSI Model Presentation Layer Presentation layer defines the format in which the data is to be exchanged between the two communicating entities. Also handles data compression and data encryption (cryptography).
33
OSI Model Application Layer Application layer interacts with application programs and is the highest level of OSI model. Application layer contains management functions to support distributed applications. Examples of application layer are applications such as file transfer, electronic mail, remote login etc.
34
OSI Model OSI in Action A message begins at the top application layer and moves down the OSI layers to the bottom physical layer. As the message descends, each successive OSI model layer adds a header to it. A header is layer-specific information that basically explains what functions the layer carried out. Conversely, at the receiving end, headers are striped from the message as it travels up the corresponding layers.
35
TCP/IP Model OSI & TCP/IP Models
36
Transport Layer (TCP/UDP)
TCP/IP Model TCP/IP Model Application Layer Application programs using the network Transport Layer (TCP/UDP) Management of end-to-end message transmission, error detection and error correction Network Layer (IP) Handling of datagrams : routing and congestion Data Link Layer Management of cost effective and reliable data delivery, access to physical networks Physical Layer Physical Media
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.