Download presentation
Presentation is loading. Please wait.
1
ACID – BASE DISORDERS M. Tatár
2
H+ affects structure and function of proteins
changes of cellular enzymes activity cellular and organ functions changes
3
Sources of H+ in organism
a) Volatile acid CO2 + H2O H2CO3 H+ + HCO3- b) fixed acids H2SO4, H3PO4 c) organic acids lactic acid, ketoacids
4
H+ balance per day H+ poduction Volatile acid 20 000 mmol
Fixed and volatile acids 30-80 mmol H+ elimination Lungs (CO2) Kidneys
5
Hydrogen ion pH = - log [ H+] mol . l-1
[ H+ ] = from ,44 to ,36 = 0, , mol . l-1 = nmol . l-1 pH = - log [ H+] mol . l-1 pH = 7,4 0,04 mitochondria : active H+
6
pH H+ (nmol.l-1) 160 140 120 100 80 acidaemia 60 norm 40 basaemia 20
6,8 7,1 7,4 7,7 acidaemia norm basaemia
7
acidemia acidosis alkalemia alkalosis
8
HENDERSON – HASSELBALCH equation
[ H+ ] . [ HCO3-] K = [ H2CO3] [ H2CO3] [ H+ ] = K [ HCO3-] [ HCO3-] log = log log [ H+ ] K [ H2CO3] [ HCO3-] pH = pK + log [ H2CO3] 24 mmol pH = log ( log 20 ) 30/1.5 18/0.9 1.2 mmol pH = = 7,4
9
Buffers 1 [ HCO3- ] 1. Bicarbonate system ------------ Hb [ H2 CO3 ]
HCl + NaHCO3 H2 CO3 + NaCl NaOH + H2 CO3 NaHCO3 + H2O Hb 2. Hemoglobin system HbO2
10
CO2 transport
11
Buffers 2 proteinate- HPO42- 3. Plasma proteins ---------------
H - protein HPO42- 4. Phosphate system H2PO4- HCO % (plasma 35%, RBC- 18%) Buffers Hb - HbO % in blood Phosphates % Plasm. prot %
12
Proximal tubule „reabsorbed“ HCO3- Na,K,ATP-ase
13
Distal nephron „new“ HCO3-
14
13.3 10.6 hypoventilation 8.0 (kPa) 6.7 Pco2 5.3 4.0 hyperventilation 2.7 7.0 7.2 7.4 7.6 pH
15
Mechanisms of acid – base disorders
metabolic metabolic 1. acidosis 2. alkalosis 3. acidosis 4. alkalosis HCO3- pH = pK + log PCO2 respiratory 5. acidosis 6. alkalosis
16
[ Na+ ] - ( [Cl-] + [ HCO3-] ) = 10 - 12 mmol.l-1
Anion gap [ Na+ ] - ( [Cl-] + [ HCO3-] ) = mmol.l-1 ( ) = 12 mmol.l-1 > organic or fixed acids
17
Causes of metabolic acidosis (MAC)
I. Normal anion gap MAC bicarbonate loss hyperchloremic MAC a) via the GIT: diarrhea, small bowel fistula b) renal tubular acidosis (reduced H+ excretion) [ Na+ ] - ( [Cl-] + [ HCO3-] ) = 12 mmol.l-1 II. High anion gap MAC gains of noncarbonic acids a) lactic acid: hypoxia, liver insufficiency b) ketoacidosis: diabetes mellitus, starvation c) retention of fixed acids: renal failure [ Na+ ] - ( [Cl-] + [ HCO3-] ) > 12 mmol.l-1 acids
18
Compensatory response in MAC
1. ventilation M M ----- R R 2. HCO3- retention in kidneys Clinical features - Kusmaul breathing - cardiac contractility - lethargy - renal osteodystrophy - hyperkalemia - vomiting
19
Causes of metabolic alkalosis (MAL)
Primary Cl- lost (hypochloremic alkalosis) b) kidneys: diuretics (furosemid) a) GIT: prolonged vomiting Cl- and HCO3- have a reciprocal relationships to maintaine electroneutrality of ECF [ Na+ ] - ( [Cl-] + [ HCO3-] ) = 12 mmol.l-1
20
Compensatory response in MAL
1. Alveolar hypoventilation M M R R 2. Renal excretion of the excess HCO3- Clinical features - occasionally tetany - risk of cardiac dysrhythmias - afinity of Hb to O2 - hypokalemia
21
Causes of respiratory acidosis (RAC)
Respiratory disorders CO2 accumulation - alveolar hypoventilation Compensatory response HCO3- retention in kidneys M M R R Clinical features - CNS dysfunction: confusion, somnolence - cerebral vasodilation: intracranial pressure
22
Causes of respiratory alkalosis (RAL)
Alveolar hyperventilation - respiratory centre stimulation a) the most common: anxiety and emotional stress b) hypermetabolic conditions: fever, CNS lesions, thyreotoxicosis c) hypoxia: pneumonia, pulmonary edema, high altitude Compensatory response Clinical features renal excretion of HCO3- M M R R - vomiting tetany
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.