Presentation is loading. Please wait.

Presentation is loading. Please wait.

ACID – BASE DISORDERS M. Tatár.

Similar presentations


Presentation on theme: "ACID – BASE DISORDERS M. Tatár."— Presentation transcript:

1 ACID – BASE DISORDERS M. Tatár

2   H+ affects structure and function of proteins
changes of cellular enzymes activity cellular and organ functions changes

3 Sources of H+ in organism
a) Volatile acid CO2 + H2O  H2CO3  H+ + HCO3- b) fixed acids H2SO4, H3PO4 c) organic acids lactic acid, ketoacids

4 H+ balance per day H+ poduction Volatile acid 20 000 mmol
Fixed and volatile acids 30-80 mmol H+ elimination Lungs (CO2) Kidneys

5 Hydrogen ion pH = - log [ H+] mol . l-1
[ H+ ] = from ,44 to ,36 = 0, , mol . l-1 = nmol . l-1 pH = - log [ H+] mol . l-1 pH = 7,4  0,04 mitochondria : active H+

6 pH H+ (nmol.l-1) 160 140 120 100 80 acidaemia 60 norm 40 basaemia 20
6,8 7,1 7,4 7,7 acidaemia norm basaemia

7 acidemia acidosis alkalemia alkalosis

8 HENDERSON – HASSELBALCH equation
[ H+ ] . [ HCO3-] K = [ H2CO3] [ H2CO3] [ H+ ] = K [ HCO3-] [ HCO3-] log = log log [ H+ ] K [ H2CO3] [ HCO3-] pH = pK + log [ H2CO3] 24 mmol pH = log ( log 20 ) 30/1.5 18/0.9 1.2 mmol pH = = 7,4

9 Buffers 1 [ HCO3- ] 1. Bicarbonate system ------------ Hb [ H2 CO3 ]
HCl + NaHCO3  H2 CO3 + NaCl NaOH + H2 CO3  NaHCO3 + H2O Hb 2. Hemoglobin system HbO2

10 CO2 transport

11 Buffers 2 proteinate- HPO42- 3. Plasma proteins ---------------
H - protein HPO42- 4. Phosphate system H2PO4- HCO % (plasma 35%, RBC- 18%) Buffers Hb - HbO % in blood Phosphates % Plasm. prot %

12 Proximal tubule „reabsorbed“ HCO3- Na,K,ATP-ase

13 Distal nephron „new“ HCO3-

14 13.3 10.6 hypoventilation 8.0 (kPa) 6.7 Pco2 5.3 4.0 hyperventilation 2.7 7.0 7.2 7.4 7.6 pH

15 Mechanisms of acid – base disorders
metabolic metabolic 1. acidosis 2. alkalosis 3. acidosis 4. alkalosis HCO3- pH = pK + log PCO2 respiratory 5. acidosis 6. alkalosis

16 [ Na+ ] - ( [Cl-] + [ HCO3-] ) = 10 - 12 mmol.l-1
Anion gap [ Na+ ] - ( [Cl-] + [ HCO3-] ) = mmol.l-1 ( ) = 12 mmol.l-1 > organic or fixed acids

17 Causes of metabolic acidosis (MAC)
I. Normal anion gap MAC bicarbonate loss  hyperchloremic MAC a) via the GIT: diarrhea, small bowel fistula b) renal tubular acidosis (reduced H+ excretion) [ Na+ ] - ( [Cl-] + [ HCO3-] ) = 12 mmol.l-1 II. High anion gap MAC gains of noncarbonic acids a)  lactic acid: hypoxia, liver insufficiency b) ketoacidosis: diabetes mellitus, starvation c) retention of fixed acids: renal failure [ Na+ ] - ( [Cl-] + [ HCO3-] ) > 12 mmol.l-1 acids

18 Compensatory response in MAC
1.  ventilation M M -----  R R 2. HCO3- retention in kidneys Clinical features - Kusmaul breathing -  cardiac contractility - lethargy - renal osteodystrophy - hyperkalemia - vomiting

19 Causes of metabolic alkalosis (MAL)
Primary Cl- lost (hypochloremic alkalosis) b) kidneys: diuretics (furosemid) a) GIT: prolonged vomiting Cl- and HCO3- have a reciprocal relationships to maintaine electroneutrality of ECF [ Na+ ] - ( [Cl-] + [ HCO3-] ) = 12 mmol.l-1

20 Compensatory response in MAL
1. Alveolar hypoventilation M M R R 2. Renal excretion of the excess HCO3- Clinical features - occasionally tetany -  risk of cardiac dysrhythmias -  afinity of Hb to O2 - hypokalemia

21 Causes of respiratory acidosis (RAC)
Respiratory disorders  CO2 accumulation - alveolar hypoventilation Compensatory response HCO3- retention in kidneys M M R  R Clinical features - CNS dysfunction: confusion, somnolence - cerebral vasodilation:  intracranial pressure

22 Causes of respiratory alkalosis (RAL)
Alveolar hyperventilation - respiratory centre stimulation a) the most common: anxiety and emotional stress b) hypermetabolic conditions: fever, CNS lesions, thyreotoxicosis c) hypoxia: pneumonia, pulmonary edema, high altitude Compensatory response Clinical features  renal excretion of HCO3- M M  R  R  - vomiting tetany


Download ppt "ACID – BASE DISORDERS M. Tatár."

Similar presentations


Ads by Google