Presentation is loading. Please wait.

Presentation is loading. Please wait.

Background Gottfried Leibniz Blaise Pascal Yang Hui Leonhard Euler

Similar presentations


Presentation on theme: "Background Gottfried Leibniz Blaise Pascal Yang Hui Leonhard Euler"— Presentation transcript:

1 Leibniz’s Harmonic Triangle Gottfried Leibniz, 1762 Stephanie Moore & Jennifer LeBlanc

2 Background Gottfried Leibniz Blaise Pascal Yang Hui Leonhard Euler
History of Triangles Sanskrit poet Pingala’s Mythical mountain - 3rd Century Yang Hui - 13th Century Pascal - 17th Century Euler – 18th Century Leibniz – 18th Century Leibniz formed his triangle in response to a challenge from Christiaan Huygens to find the sum of the triangle reciprocals. Gottfried Leibniz Blaise Pascal Yang Hui Leonhard Euler

3 Leibniz’s Harmonic Triangle
Pascal’s Triangle Leibniz’s Harmonic Triangle 1 1 𝟏 𝟐 1 𝟏 𝟏 𝟐 1 𝟏 𝟑 2 𝟏 𝟔 1 𝟏 𝟑 1 𝟏 𝟒 𝟏 𝟏𝟐 3 3 𝟏 𝟏𝟐 1 𝟏 𝟒 Pascal’s Triangle – ADD DOWN, coefficients for binomial expansion, Combinations Leibniz Triangle – ADD UP, he created it in response to Christiaan Huygen’s challenge: Sum of triangle reciprocals. 1 𝟏 𝟓 4 𝟏 𝟐𝟎 6 𝟏 𝟑𝟎 4 𝟏 𝟐𝟎 1 𝟏 𝟓 1 𝟏 𝟔 5 𝟏 𝟑𝟎 10 𝟏 𝟔𝟎 10 𝟏 𝟔𝟎 5 𝟏 𝟑𝟎 1 𝟏 𝟔

4 Relationships Between the Triangles
1 𝟏 2 3 4 6 1 2 3 6 4 12 5 20 30 1 𝟏 𝟐 𝟏 𝟑 𝟏 𝟔 𝟏 𝟒 𝟏 𝟏𝟐 𝟏 𝟓 𝟏 𝟐𝟎 𝟏 𝟑𝟎 1 1 Pascal Leibniz 1 2 1 2 3 1 3 4 1 4 6 1 4 6 5 𝒇 𝒙 =𝟏 𝑥 4 + 𝟒 𝑥 3 + 𝟔 𝑥 2 +𝟒𝑥+𝟏 Factor GCF out of Leibniz Denominator Form a polynomial of descending degree with Pascal’s coefficients and the derivative coefficients are the previous row in Leibniz’s triangle 𝑓 ′ 𝑥 =𝟒 𝑥 3 +𝟏𝟐 𝑥 2 +𝟏𝟐𝑥+𝟒

5 Formula To Find Any Term
Patterns Formula To Find Any Term 1 𝟏 𝟐 𝟏 𝟑 𝟏 𝟔 𝟏 𝟒 𝟏 𝟏𝟐 𝟏 𝟓 𝟏 𝟐𝟎 𝟏 𝟑𝟎 𝟏 𝟔𝟎 R = Row N = nth term 1 𝑹 𝑵 = 𝑹 −𝑵 ! 𝑵−𝟏 ! 𝑹! 𝟏 𝟐 𝟏 𝟐 𝟏 𝟏 Row 2 𝟒 𝟐 = 𝟒 −𝟐 ! 𝟐−𝟏 ! 𝟒! = 𝟐!𝟏! 𝟒! = 𝟏 𝟏𝟐 𝟏 𝟑 𝟏 𝟔 𝟏 𝟑 𝟏 𝟐 𝟐 𝟏 Row 3 𝟏 𝟒 𝟏 𝟏𝟐 𝟏 𝟏𝟐 𝟏 𝟒 𝟏 𝟑 𝟐 𝟐 𝟑 𝟏 Row 4 𝟓 𝟑 = 𝟓 −𝟑 ! 𝟑−𝟏 ! 𝟓! = 𝟐!𝟐! 𝟓! = 𝟏 𝟑𝟎 You can also get the terms by multiplying across. These fraction partitions show a factorial pattern. 𝟏 𝟓 𝟏 𝟐𝟎 𝟏 𝟑𝟎 𝟏 𝟐𝟎 𝟏 𝟓 𝟏 𝟒 𝟐 𝟑 𝟑 𝟐 𝟒 𝟏 Row 5 𝟏 𝟔 𝟏 𝟑𝟎 𝟏 𝟔𝟎 𝟏 𝟔𝟎 𝟏 𝟑𝟎 𝟏 𝟔 𝟏 𝟓 𝟐 𝟒 𝟑 𝟑 𝟒 𝟐 𝟓 𝟏 Row 6

6 Diagonals of Leibniz’s Triangle
1 Diagonal 1 𝟏 𝟐 𝟏 𝟔 𝟏 𝟏𝟐 𝟏 𝟐𝟎 𝟏 𝟑𝟎 𝟏 𝟐 𝟏 𝟑 𝟏 𝟑 The Harmonic Series: 𝑛=1 ∞ 1 𝑛 Telescoping Series: 𝟏 𝟐 𝟏 𝟔 𝟏 𝟏𝟐 𝟏 𝟐𝟎 𝟏 𝟑𝟎 = 𝟏 𝟐 + 𝟏 𝟐 − 𝟏 𝟑 + 𝟏 𝟑 − 𝟏 𝟒 + 𝟏 𝟒 − 𝟏 𝟓 + 𝟏 𝟓 − 𝟏 𝟔 𝟏 𝟒 𝟏 𝟏𝟐 𝟏 𝟒 Telescoping Series: 𝟏 𝟒 𝟏 𝟐𝟎 𝟏 𝟔𝟎 𝟏 𝟏𝟒𝟎 = 𝟏 𝟒 + 𝟏 𝟏𝟐 − 𝟏 𝟑𝟎 + 𝟏 𝟑𝟎 − 𝟏 𝟔𝟎 + 𝟏 𝟔𝟎 − 𝟏 𝟏𝟎𝟓 Telescoping Series: 𝟏 𝟑 𝟏 𝟏𝟐 𝟏 𝟑𝟎 𝟏 𝟔𝟎 𝟏 𝟏𝟎𝟓 = 𝟏 𝟑 + 𝟏 𝟔 − 𝟏 𝟏𝟐 + 𝟏 𝟏𝟐 − 𝟏 𝟐𝟎 + 𝟏 𝟐𝟎 − 𝟏 𝟑𝟎 + 𝟏 𝟑𝟎 − 𝟏 𝟒𝟐 𝟏 𝟓 𝟏 𝟑𝟎 𝟏 𝟐𝟎 =𝟏 Diverges 𝟏 𝟔 𝟏 𝟔𝟎 𝟏 𝟔𝟎 = 𝟏 𝟐 = 𝟏 𝟑

7 Huygen’s challenge: Find the sum of the triangle reciprocals
Triangle Numbers: 1, 3, 6, 10, Triangle Reciprocals: , , , , Leibniz Diagonal 2: , , , , Sum = 1 Factor out ½ : , , , , Triangle reciprocals Since 𝟏 𝟐 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒓𝒆𝒄𝒊𝒑𝒓𝒐𝒄𝒂𝒍𝒔 = 𝟏 , 𝒕𝒉𝒆𝒏 𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆 𝒓𝒆𝒄𝒊𝒑𝒓𝒐𝒄𝒂𝒍𝒔 = 𝟐

8 Diagonal Series Patterns:
Diagonal Sum 𝟏 𝟐 2 + 𝟏 𝟐 = 𝟏 𝟐 + 𝟏 𝟐 𝟏 𝟏 Triangle Reciprocals: Tn = 2 𝑛(𝑛−1) = 𝟏 𝟑 + 𝟏 𝟐 𝟏 𝟑 3 𝟏 𝟑 + 𝟏 𝟔 𝟏 𝟒 + 𝟏 𝟏𝟐 = 𝟏 𝟒 + 𝟏 𝟐 𝟏 𝟔 4 𝑺𝒖𝒎 𝒐𝒇 𝒊𝒏𝒕𝒆𝒓𝒊𝒐𝒓 𝒅𝒊𝒂𝒈𝒐𝒏𝒂𝒍𝒔: Sn= 𝟏 𝒏 + 𝟏 𝟐 𝟐 𝒏(𝒏−𝟏) 𝑺𝒏= 𝟏 𝒏−𝟏

9 Thanks! ANY QUESTIONS? Summary: Exterior diagonals Harmonic Series
Interior diagonals Telescoping Series Each Telescoping Sum Harmonic Series Thanks! ANY QUESTIONS?

10 THE END

11 References STONES, I. (1983). THE HARMONIC TRIANGLE: OPPORTUNITIES FOR PATTERN IDENTIFICATION AND GENERALIZATION. The Mathematics Teacher, 76(5), Retrieved from Blaise Pascal [Digital image]. (2012, April 26). Retrieved November 22, 2016, from "Circa 1680, Gottfried Wilhelm Leibniz ( ), German rationalist philosopher and mathematician. In 1675 he founded integral and differential calculus, publishing in 1684 (before Newton). (Photo by Archive Photos/Getty Images)" -- Image Date: 1/2/ Image Date: 1/2/1754. (1754, January 02). Retrieved November 26, 2016, from Imh. Leibniz harmonic triangle [Digital image]. (2011, February 18). Retrieved November 23, 2016, from

12 MacKinnon, D. (2009, January 26). [Euler's Number Triangle]
MacKinnon, D. (2009, January 26). [Euler's Number Triangle]. Retrieved November 22, 2016, from Pascal, B. (2007, September 27). Triángulo de Pascal en el escrito original de Pascal [Digital image]. Retrieved November 22, 2016, from Pascal’s triangle. [Image]. In Encyclopædia Britannica. Retrieved from   Portrait of Chan Master Yangqi Fanghui [Digital image]. (2014, August 04). Retrieved November 22, 2016, from Portrait of Swiss mathematician and physicist Leonhard Euler ( ), 1740s. Euler, considered one of the greatest mathematicians who ever lived, was the first to use the term 'function' to descibe an expression involving various arguments and was the first to apply calculus to physics. (Photo by Kean Collection/Getty Images). (1754, January 02). Retrieved November 26, 2016, from Imh. STONES, I. (1983). THE HARMONIC TRIANGLE: OPPORTUNITIES FOR PATTERN IDENTIFICATION AND GENERALIZATION. The Mathematics Teacher, 76(5), Retrieved from

13 Tent, M. B. (2011). Gottfried Wilhelm Leibniz: The polymath who brought us calculus. [Google Books Version]. Retrieved November 21, 2016, from


Download ppt "Background Gottfried Leibniz Blaise Pascal Yang Hui Leonhard Euler"

Similar presentations


Ads by Google