Presentation is loading. Please wait.

Presentation is loading. Please wait.

ME 475/675 Introduction to Combustion

Similar presentations


Presentation on theme: "ME 475/675 Introduction to Combustion"β€” Presentation transcript:

1 ME 475/675 Introduction to Combustion
Lecture 8 Dissociation, Problem X2, Equilibrium Produces of Combustion, Simple models for lean and rich combustion

2 Announcements HW 3: X2, Ch 2 (57), Due Monday
Modify MathCAD program from lecture notes with πœ’ 𝑁 2 =0 ABET assessment visitor during last 20 minutes of Monday’s lecture Dr. Sriram Somasundaram

3 Equilibrium Products of Hydrocarbon Combustion
Combine Chemical Equilibrium (2nd law) & Adiabatic Flame Temperature (1st law) For Example: Propane and air combustion Ideal 𝐢 3 𝐻 𝑂 𝑁 2 β†’3𝐢 𝑂 2 +4 𝐻 2 𝑂+18.8 𝑁 2 +(0) 𝑂 2 Four products for a range of air/fuel ratios: 𝐢 𝑂 2 , 𝐻 2 𝑂, 𝑁 2 , 𝑂 2 Now consider seven more possible dissociation products: 𝐢𝑂, 𝐻 2 , 𝐻, 𝑂𝐻, 𝑂, 𝑁𝑂, 𝑁 What happens as air/fuel (equivalence) ratio changes Ξ¦= 𝐴/𝐹 π‘†π‘‘π‘œπ‘–π‘β„Žπ‘–π‘œ 𝐴/𝐹 π΄π‘π‘‘π‘’π‘Žπ‘™ = 𝐹 𝐴 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐹 𝐴 π‘†π‘‘π‘œπ‘–π‘β„Žπ‘–π‘œ

4 Data: Flame temp and major mole-fractions vs Ξ¦
Equivalence Ratio Ξ¦= 𝐹 𝐴 π΄π‘π‘‘π‘’π‘Žπ‘™ 𝐹 𝐴 π‘†π‘‘π‘œπ‘–π‘β„Žπ‘–π‘œ At Ξ¦=1 O2, CO, H2 all present due to dissociation. Not present in β€œideal” combustion πœ’ 𝐻 2 𝑂 π‘€π‘Žπ‘₯ at Ξ¦=1.15 𝑇 𝐴𝑑 π‘€π‘Žπ‘₯ at Ξ¦=1.05 𝑇 𝐴𝑑 βˆ’ 𝑇 𝑅𝑒𝑓 = 𝐻 𝐢 𝑁 π‘‡π‘œπ‘‘ 𝑐 𝑝,π‘šπ‘–π‘₯ 𝐻 𝐢 and 𝑁 π‘‡π‘œπ‘‘ 𝑐 𝑝,π‘šπ‘–π‘₯ decrease for Ξ¦>1 For Ξ¦<1.05: 𝑁 π‘‡π‘œπ‘‘ 𝑐 𝑝,π‘šπ‘–π‘₯ decreases faster For Ξ¦>1.05: 𝐻 𝐢 decreases faster For Ξ¦<1 need to include O2 For Ξ¦>1 need to include CO and H2 Tad[K] πœ’ 𝑖 % β€œOld” β€œNew” Fuel Lean O2 Fuel Rich Get CO, H2

5 Minor-Specie Mole Fractions: NO, OH, H, O
1% Not considered in Ideal combustion For all πœ’ 𝑖 < 4000 ppm = 0.4% Peak near Ξ¦=1 πœ’ 𝑂𝐻 >10 πœ’ 𝑂 πœ’ 𝑁(π‘›π‘œπ‘‘ π‘ β„Žπ‘œπ‘€π‘›) β‰ͺ πœ’ 𝑂 πœ’ 𝑖 ppm

6 Simple Product Calculation method
𝐢 π‘₯ 𝐻 𝑦 +π‘Ž 𝑂 𝑁 2 →𝑏𝐢 𝑂 2 +𝑐𝐢𝑂+𝑑 𝐻 2 𝑂+𝑒 𝐻 2 + 𝑓 𝑂 2 +(3.76π‘Ž) 𝑁 2 Add 𝐢𝑂, 𝐻 2 π‘Žπ‘›π‘‘ 𝑂 2 Neglect β€œminor” species: NO, OH, H, O π‘Ž= π‘šπ‘œπ‘™π‘’π‘  π΄π‘–π‘Ÿ π‘šπ‘œπ‘™π‘’π‘  𝐹𝑒𝑒𝑙 = π‘₯+ 𝑦 4 Ξ¦ Ξ¦= 𝐴/𝐹 π‘†π‘‘π‘œπ‘–π‘β„Žπ‘–π‘œ 𝐴/𝐹 π΄π‘π‘‘π‘’π‘Žπ‘™ Assume π‘₯, 𝑦 and Ξ¦ are known What is a good assumption for lean mixtures Φ≀1? 𝐢 π‘₯ 𝐻 𝑦 +π‘Ž 𝑂 𝑁 2 →𝑏𝐢 𝑂 2 +𝑑 𝐻 2 𝑂+𝑓 𝑂 2 +(3.76π‘Ž) 𝑁 2 c = e = 0 (no CO or H2), but now include 𝑂 2 3 unknowns (b, d, f), 3 atom balances (C, H, O)

7 Atomic Balance for Lean combustion Φ≀1
𝐢 π‘₯ 𝐻 𝑦 +π‘Ž 𝑂 𝑁 2 →𝑏𝐢 𝑂 2 +𝑑 𝐻 2 𝑂+𝑓 𝑂 2 +(3.76π‘Ž) 𝑁 2 C: π‘₯=𝑏 so 𝑏=π‘₯ H: 𝑦=2𝑑 so 𝑑= 𝑦 2 O: 2π‘Ž=2𝑏+𝑑+2𝑓=2π‘₯+ 𝑦 2 +2𝑓 so 𝑓=π‘Žβˆ’π‘₯βˆ’ 𝑦 4 = π‘₯+ 𝑦 4 Ξ¦ βˆ’π‘₯βˆ’ 𝑦 4 = π‘₯+ 𝑦 Ξ¦ βˆ’1 = π‘₯+ 𝑦 βˆ’Ξ¦ Ξ¦ Check: if Ξ¦=1, then 𝑓=0 𝑁 π‘‡π‘œπ‘‘ =𝑏+𝑑+𝑓+3.76π‘Ž=π‘₯+ 𝑦 2 + π‘₯+ 𝑦 βˆ’Ξ¦ Ξ¦ π‘₯+ 𝑦 4 Ξ¦ =π‘₯+ 𝑦 2 + π‘₯+ 𝑦 4 Ξ¦ 1βˆ’Ξ¦+3.76 Mole Fractions πœ’ 𝐢 𝑂 2 = π‘₯ 𝑁 π‘‡π‘œπ‘‘ ; πœ’ 𝐻 2 𝑂 = 𝑦 2 𝑁 π‘‡π‘œπ‘‘ ; πœ’ 𝑂 2 = π‘₯+ 𝑦 βˆ’Ξ¦ Ξ¦ 𝑁 π‘‡π‘œπ‘‘ ; πœ’ 𝑁 2 = π‘₯+ 𝑦 4 Ξ¦ 𝑁 π‘‡π‘œπ‘‘ MathCAD Solution

8 Comparison Φ≀1 Total number of modes decreases as Ξ¦ increases
H2O O2 N2/10 Total number of modes decreases as Ξ¦ increases Does not include CO or H2 at Ξ¦~1 Not bad for a simple model for Ξ¦<1 Conversely, when mixture is fuel rich, get significant CO or H2 but little O2

9 For Rich combustion Ξ¦>1
𝐢 π‘₯ 𝐻 𝑦 +π‘Ž 𝑂 𝑁 2 →𝑏𝐢 𝑂 2 +𝑐𝐢𝑂+𝑑 𝐻 2 𝑂+𝑒 𝐻 2 +(3.76π‘Ž) 𝑁 2 No 𝑂 2 (or fuel), so 𝑓=0 4 unknows: b, c, d and e 3 Atom balances: C, H, O Need one more constraint Consider β€œWater-Gas Shift Reaction” equilibrium 𝐢𝑂+ 𝐻 2 𝑂↔𝐢 𝑂 2 + 𝐻 2 𝐾 𝑃 = 𝑃 𝐢 𝑂 2 𝑃 π‘œ 𝑃 𝐻 2 𝑃 π‘œ 𝑃 𝐢𝑂 𝑃 π‘œ 𝑃 𝐻 2 𝑂 𝑃 π‘œ = πœ’ 𝐢 𝑂 πœ’ 𝐻 πœ’ 𝐢𝑂 πœ’ 𝐻 2 𝑂 𝑃 𝑃 π‘œ 0 = 𝑏 𝑁 π‘‡π‘œπ‘‘ 𝑒 𝑁 π‘‡π‘œπ‘‘ 𝑐 𝑁 π‘‡π‘œπ‘‘ 𝑑 𝑁 π‘‡π‘œπ‘‘ = 𝑏𝑒 𝑐𝑑 = 𝐾 𝑃 Not dependent on P since number of moles of products and reactants are the same Ξ” 𝐺 𝑇 π‘œ =1 𝑔 𝑓,𝐢 𝑂 2 π‘œ +1 𝑔 𝑓, 𝐻 2 π‘œ βˆ’1 𝑔 𝑓,𝐢𝑂 π‘œ βˆ’1 𝑔 𝑓, 𝐻 2 𝑂 π‘œ =𝑓𝑛 π‘‡π‘’π‘šπ‘π‘’π‘Ÿπ‘Žπ‘‘π‘’π‘Ÿπ‘’ ; 𝐾 𝑃 =exp βˆ’Ξ” 𝐺 𝑇 π‘œ 𝑅 𝑒 𝑇 See plot from data on page 51 KP = 0.22 to for T = 2000 to 3500 K

10 Atomic Balances 𝐢 π‘₯ 𝐻 𝑦 +π‘Ž 𝑂 𝑁 2 →𝑏𝐢 𝑂 2 +𝑐𝐢𝑂+𝑑 𝐻 2 𝑂+𝑒 𝐻 2 +(3.76π‘Ž) 𝑁 2 C: π‘₯=𝑏+𝑐 𝑐=π‘₯βˆ’π‘ (in terms of b and β€œknowns,” x, y, a) O: 2π‘Ž=2𝑏+𝑐+𝑑=2𝑏+ π‘₯βˆ’π‘ +𝑑=𝑏+π‘₯+𝑑 𝑑=2π‘Žβˆ’π‘βˆ’π‘₯ (in terms of b and β€œknowns”) H: 𝑦=2𝑑+2𝑒=4π‘Žβˆ’2π‘βˆ’2π‘₯+2𝑒 𝑒= 𝑦 2 βˆ’2π‘Ž+𝑏+π‘₯ (in terms of b and β€œknowns”) Plug into equilibrium constraint 𝑏𝑒= 𝐾 𝑃 𝑐𝑑 𝑏 𝑦 2 βˆ’2π‘Ž+𝑏+π‘₯ = 𝐾 𝑃 π‘₯βˆ’π‘ 2π‘Žβˆ’π‘βˆ’π‘₯ ; b is the only unknown! Expand and collect terms to get

11 Solution 𝑦 2 π‘βˆ’2π‘Žπ‘+ 𝑏 2 +π‘₯𝑏 =2π‘Žπ‘₯ 𝐾 𝑃 βˆ’π‘π‘₯ 𝐾 𝑃 βˆ’ π‘₯ 2 𝐾 𝑃 βˆ’2π‘Žπ‘ 𝐾 𝑃 + 𝑏 2 𝐾 𝑃 +π‘₯𝑏 𝐾 𝑃 0= 𝑏 2 𝐾 𝑃 βˆ’1 +b 2π‘Ž 1βˆ’ 𝐾 𝑃 βˆ’π‘₯βˆ’ 𝑦 2 + 𝐾 𝑃 π‘₯ 2π‘Žβˆ’π‘₯ 𝑏= βˆ’ 2π‘Ž 1βˆ’ 𝐾 𝑃 βˆ’π‘₯βˆ’ 𝑦 2 Β± 2π‘Ž 1βˆ’ 𝐾 𝑃 βˆ’π‘₯βˆ’ 𝑦 βˆ’4 𝐾 𝑃 βˆ’1 𝐾 𝑃 π‘₯ 2π‘Žβˆ’π‘₯ 2 𝐾 𝑃 βˆ’1 Since 𝐾 𝑃 βˆ’1<0, use β€œ-” root Mole fraction can be calculated from b MathCAD Solution For Homework, re-derive these equations with pure oxygen (no nitrogen)

12 Comparison Ξ¦>1 CO2 H2O H2 N2/10 CO Φ≀1 Total number of moles continues to decrease as Ξ¦ increases At Ξ¦~1 , has no not include O2, CO or H2 However, not bad for a simple model for Ξ¦>1 More accurate models may be developed by including more equilibrium reactions and constants using computer programs Computer Programs Provided by the Book Appendix F, pp , for Complex Reactions

13 More Complex 𝐢 𝑂 2 Dissociation
Before: 𝐢 𝑂 2 ↔𝐢𝑂 𝑂 2 ; three unknowns: πœ’ 𝐢 𝑂 2 , πœ’ 𝐢𝑂 , πœ’ 𝑂 2 For more complete analysis, add an additional product For 𝐢 𝑂 2 ↔𝐢𝑂 𝑂 2 +__𝑂 add 𝑂 2 ↔2𝑂; one more unknown: πœ’ 𝑂 Need one more constraint: 𝐾 𝑃, 𝑂 2 = 𝑃 𝑂 𝑃 π‘œ 𝑃 𝑂 2 𝑃 π‘œ = πœ’ 𝑂 πœ’ 𝐢 𝑂 𝑃 𝑃 π‘œ 1 𝐾 𝑃, 𝑂 2 =exp βˆ’Ξ” 𝐺 𝑇, 𝑂 2 π‘œ 𝑅 𝑒 𝑇 ; Ξ” 𝐺 𝑇, 𝑂 2 π‘œ =2 𝑔 𝑓,𝑂 π‘œ βˆ’1 𝑔 𝑓, 𝑂 2 π‘œ Already had 𝐾 𝑃,𝐢 𝑂 2 = πœ’ 𝐢𝑂 πœ’ 𝑂 πœ’ 𝐢 𝑂 𝑃 𝑃 π‘œ ; 𝐾 𝑃,𝐢 𝑂 2 =exp βˆ’Ξ” 𝐺 𝑇,𝐢 𝑂 2 π‘œ 𝑅 𝑒 𝑇 ; Ξ” 𝐺 𝑇,𝐢 𝑂 2 π‘œ =1 𝑔 𝑓,𝐢𝑂 π‘œ 𝑔 𝑓, 𝑂 2 π‘œ βˆ’1 𝑔 𝑓,𝐢 𝑂 2 π‘œ πœ’ 𝐢 𝑂 πœ’ 𝐢𝑂 ,+ πœ’ 𝑂 2 + πœ’ 𝑂 =1 𝑁 𝐢 𝑁 𝑂 = πœ’ 𝐢 𝑂 2 + πœ’ 𝐢𝑂 2 πœ’ 𝐢 𝑂 2 + πœ’ 𝐢𝑂 +2 πœ’ 𝑂 2 + πœ’ 𝑂 …

14 Computer Programs Provided by Book Publisher
Described in Appendix F (pp 113-4) For β€œcomplex” reactions (11 product species) Fuel: CNHMOLNK Oxidizer: Air Download from web: student edition Computer codes Access to TPEquil, HFFlame, UVFlame Extract All TPEQUIL (TP Equilibrium) Use to find Equilibrium composition and mixture properties Required input Fuel CNHMOLNK Temperature Pressure Equivalence ratio (with air) to determine initial number of moles of each atom

15 HPFLAME (HP Flame) Use to find Required Input
Adiabatic flame temperature for constant pressure Required Input Fuel, equivalence ratio, enthalpy of reactants HR, pressure For constant pressure: HP = HR Find TAd In our examples we assume ideal combustion so we knew the product composition But this program calculates the more realistic equilibrium composition of the products from a (complex) equilibrium calculation (multiple equilibrium reactions) But this requires TProd = TAd, which we are trying to find! Requires program (not humans) to iterate

16 Air Preheaters Preheating the air using exhaust or flue gas increases the flame temperature Recuperators uses heat transfer across a wall Regenerators use a moving ceramic or metal matrix

17 Exhaust or Flue Gas Recirculation
Inserting exhaust gas into the reactants reduces flame temperature, which can reduce pollution (oxides of nitrogen, NO, NO2)


Download ppt "ME 475/675 Introduction to Combustion"

Similar presentations


Ads by Google