Presentation is loading. Please wait.

Presentation is loading. Please wait.

Simulating the Production of Ethanol

Similar presentations


Presentation on theme: "Simulating the Production of Ethanol"— Presentation transcript:

1 Simulating the Production of Ethanol
Student Name 1 Student Name 2 Student Name 3

2 Overview Introduction to Production Simulation Results Conclusion

3 Ethanol Production Fermenter

4 Fermentation Reaction

5 Chemical Equation Glucose 2 Carbon Dioxide Ethanol + Zymase + Heat

6 Developing the System Based on Mass Balances And Energy Balance

7 Temperature Dependency
Reaction Rate Heat

8 Constant Values Variable Symbol Value Reactor Volume V 115,000 L
Concentration of Glucose Entering CGin 150 g/L Concentration of Ethanol Entering CEin 0 g/L Flow In Fin 100 L/min Flow Out Temperature In Tin 548 K Heat Capacity Cp 9 kJ/K Amount of heat given off/reaction rate β 0.02 kJ Arrhenius Constant A 1000 Temperature Constant EA/R 50 K

9 Reactor CO2 CGin, CEin, Tin, Fin Yeast CG, CE, T, F Q V, ρ, CP
Next, state the action step. Make your action step specific, clear and brief. Be sure you can visualize your audience taking the action. If you can’t, they can’t either. Be confident when you state the action step, and you will be more likely to motivate the audience to action.

10 Methods of Solution MATLAB Simulink Laplace Transform using Maple

11 MATLAB Code: Steady State
function conc=ustank(t,solution) global Tin V Fin Fout CEin Cgin B rho Cp T=solution(1); Cg=solution(2); CE=solution(3); rate=Cg*10^3*exp(-50/T) Cgin=150 conc(1,1)=(Tin*Fin*Cp*rho-T*Fout*rho*Cp+B*rate)/(V*rho*Cp); conc(2,1)=(Cgin*Fin-Cg*Fout-(rate))/V; conc(3,1)=(CEin*Fin-CE*Fout+0.5*rate)/V;

12 Linear Approximations
Taylor Series Expansion Approximate Methods:

13 Simulink: Steady State
To close, restate the action step followed by the benefits. Speak with conviction and confidence, and you will sell your ideas.

14 Laplace Transform E’(t) = -0.57e-1*exp(-0.14e-2*t)*cos(0.39e-4*t)
+0.22e-1*exp(-0.14e-2*t)*sin(0.39e-4*t) -0.17e-55*I*( e54*exp(-0.14e-2*t)*cos(0.39e-4*t) -0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) e-55*I*(0.63e54*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) +0.36e-1*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.14e-1*exp(-0.90e-3*t)*sin(0.82e-4*t) -0.17e-55*I*(-0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) -0.17e-55*I*(0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) -0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) +0.19e-1*exp(-0.75e-3*t) +0.14e-2*exp(-0.71e-3*t)

15 Step Change Steady state achieved Double concentration of glucose

16 MATLAB Code: Step Change
%unit step change function conc=ustank(t,solution) global Tin V Fin Fout CEin Cgin B rho Cp T=solution(1); Cg=solution(2); CE=solution(3); rate=Cg*10^3*exp(-50/T) if(t>1000)Cgin=300;else Cgin=150;end conc(1,1)=(Tin*Fin*Cp*rho-T*Fout*rho*Cp+B*rate)/(V*rho*Cp); conc(2,1)=(Cgin*Fin-Cg*Fout-(rate))/V; conc(3,1)=(CEin*Fin-CE*Fout+0.5*rate)/V;

17 Simulink: Step Change

18 Laplace Transform E’(t) = 28+4*exp(-0.14e-2*t)*cos(0.39e-4*t)
-17*exp(-0.14e-2*t)*sin(0.39e-4*t) +0.12e-63*I*(-0.74e65*exp(-0.14e-2*t)*cos(0.39e-4*t) -0.18e66*exp(-0.14e-2*t)*sin(0.39e-4*t)) +0.12e-63*I*(0.74e65*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.18e66*exp(-0.14e-2*t)*sin(0.39e-4*t)) -41*exp(-0.90e-3*t)*cos(0.82e-4*t) -11*exp(-0.90e-3*t)*sin(0.82e-4*t) +0.12e-63*I*(-0.49e65*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.18e66*exp(-0.90e-3*t)*sin(0.82e-4*t)) +0.12e-63*I*(0.49e65*exp(-0.90e-3*t)*cos(0.82e-4*t) -0.18e66*exp(-0.90e-3*t)*sin(0.82e-4*t)) -26*exp(-0.75e-3*t)-2.0*exp(-0.71e-3*t)

19 Unit Impulse Steady state achieved Quadruple concentration of glucose

20 MATLAB Code: Impulse %impulse response function conc=ustank(t,solution) global Tin V Fin Fout CEin Cgin B rho Cp T=solution(1); Cg=solution(2); CE=solution(3); rate=Cg*10^3*exp(-50/T) if(t>1000&t<1100)Cgin=600;else Cgin=150;end conc(1,1)=(Tin*Fin*Cp*rho-T*Fout*rho*Cp+B*rate)/(V*rho*Cp); conc(2,1)=(Cgin*Fin-Cg*Fout-(rate))/V; conc(3,1)=(CEin*Fin-CE*Fout+0.5*rate)/V;

21 Simulink: Impulse

22 Laplace Transform E’(t) = -0.38e-3*exp(-0.14e-2*t)*cos(0.39e-4*t)
+0.15e-3*exp(-0.14e-2*t)*sin(0.39e-4*t) -0.12e-57*I*(-0.63e54*exp(-0.14e-2*t)*cos(0.39e-4*t) -0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) -0.12e-57*I*(0.63e54*exp(-0.14e-2*t)*cos(0.39e-4*t) +0.16e55*exp(-0.14e-2*t)*sin(0.39e-4*t)) +0.24e-3*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.91e-4*exp(-0.90e-3*t)*sin(0.82e-4*t) -0.12e-57*I*(-0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) +0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) -0.12e-57*I*(0.39e54*exp(-0.90e-3*t)*cos(0.82e-4*t) -0.10e55*exp(-0.90e-3*t)*sin(0.82e-4*t)) +0.13e-3*exp(-0.75e-3*t) +0.96e-5*exp(-0.71e-3*t)

23 MATLAB Results for Steady State

24 Simulink Results for Steady State

25 Perturbed Steady State Results
Variable  New Value  Achieves Steady State Peaks Concentration (g/L) Time (min) Increase Reactor Volume 1,000,000 L 67.79 8500 -- Flow In 1,000 L/min 681.3 9500 Temperature In 800 K 67.9 2000 Decrease 1,150 L 8 10 L/min 6.32 8000 53.66 300 250 K 67.57 950

26 MATLAB Results for Step Change

27 Simulink Results for Step Change

28 Perturbed Step Change Results
Variable  New Variable Value  Achieves Steady State Peak Concentration (g/L) Time (min) Increase Reactor Volume 1,000,000 L 135.7 70000 -- Flow In 1,000 L/min 1363 8000 Temperature In 800 K 135.9 7500 Decrease 1,150 L 135.8 1100 10 L/min 12.94 9000 53.66 300 250 K 135.6 7000

29 MATLAB Results for Impulse

30 Expected Simulink Results for Impulse
6000 74 500

31 Perturbed Impulse Results
Variable New Variable Value  Achieves Steady State Peaks Concentration (g/L) Time (min) Increase Reactor Volume 1,000,000 L 67.8 25000 68.95 5000 Flow In 1,000 L/min 681.4 9000 -- Temperature In 800 K 67.89 6000 80.53 1300 Decrease 1,150 L 1200 271.9 1090 10 L/min 6.32 8000 53.66 300 250 K 67.57 80.92

32 Conclusions MATLAB vs. Simulink Perturbing Inputs Modeling Processes
Linear Approximations Perturbing Inputs Modeling Processes

33 Questions?


Download ppt "Simulating the Production of Ethanol"

Similar presentations


Ads by Google