Download presentation
Presentation is loading. Please wait.
1
William Trebelcock & James Erdmann
Microbe farts: detecting volatile organic compounds from fungi and bacteria using GC/MS William Trebelcock & James Erdmann
2
GC-MS Sampling Methods
Volatile Organic Compounds (VOCs) in Microorganisms VOCs in Fungi Direct Headspace VOCs in Bacteria Solid-phase Microextraction (SPME)
3
GC-MS Sampling Methods
Volatile Organic Compounds (VOCs) in Microorganisms VOCs in Fungi Direct Headspace VOCs in Bacteria Solid-phase Microextraction (SPME)
4
GC-MS Sampling Methods
Direct Headspace Sampling: Quantification of VOCs using 1 mL of headspace gas. Solid Phase Microextraction (SPME): Concentration of VOCs on absorbent fiber.
5
Why use GC-MS? Chromatogram MS: Mass analyzer, compound ID Spectrum
100 90 80 70 60 Relative Abundance 50 40 30 20 10 5.8 6.0 6.2 6.4 6.6 6.8 Time (min) 7.0 7.2 7.4 7.6 7.8 8.0 8.2 Spectrum 100 90 80 Database spectral comparison GC: Separation 70 60 Relative Abundance 50 40 30 20 10 50 100 150 200 250 300 350 400 450 500 550 600
6
Selenium Tolerance - Reduction
Fungus + Selenium Reduction Selenite or Selenate Selenium Crystals Volatilization
7
Selenium Tolerance - Volatilization
Fungus + Selenium Reduction Volatilization Selenite or Selenate ? DMSe selenite selenate dimethyl selenide
8
Fungal Isolates Fungal Treatments: Selenate, selenite, and control
Fungal Isolate Name and Abbreviated ID Isolate ID Aspergillus leporis AS117 AS2 Absidia spinosa AB134 Alternaria seleniphilia A1 Alternaria tenuissima A2 Alternaria astragali A3 Fusarium acuminatum F30 AS117 plate without selenium Fungal Treatments: Selenate, selenite, and control 30 ppm and 100 ppm concentrations 21 days growth in darkness at 22°C AS2 headspace treatment vials
9
Dimethyl selenide Characterization
60 80 100 120 140 160 180 200 m/z 10 20 30 40 50 70 90 Relative Abundance 109.96 92.93 107.97 90.93 106.98 79.91 105.98 89.94 111.96 96.93 77.91 76.93 112.98 73.90 58.08 47.03 131.01 175.98 145.88 159.91 196.51 187.07 RT: 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Time (min) 10 20 30 40 50 60 70 80 90 100 Relative Abundance 1.47 3.57 1.07 1.11 1.18 1.51 1.88 2.99 3.63 0.05 2.50 0.29 4.48 0.97 0.61 1.97 3.77 3.36 4.39 2.84 4.70 4.92 5.24
10
Dimethyl diselenide Characterization
60 80 100 120 140 160 180 200 m/z 10 20 30 40 50 70 90 Relative Abundance 92.94 94.94 90.95 189.91 187.90 174.88 79.93 89.95 185.91 108.96 170.89 88.94 77.94 159.86 191.91 106.97 176.88 168.88 155.87 75.93 104.98 81.94 110.95 153.90 193.91 74.02 47.29 63.86 126.87 141.18 RT: 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Time (min) 10 20 30 40 50 60 70 80 90 100 Relative Abundance 1.47 3.57 1.07 1.11 1.18 1.51 1.88 2.99 3.63 0.05 2.50 0.29 4.48 0.97 0.61 1.97 3.77 3.36 4.39 2.84 4.70 4.92 5.24
11
Dimethyl selenide Quantification
12
Dimethyl diselenide Quantification
13
Selenium Tolerance - Volatilization
Fungus + Selenium Volatilization Selenite 30 ppm DMDSe (low) DMSe 100 ppm (+) (high) Selenate
14
Conclusions Selenium metabolism different between plants and fungi?
DMDSe analysis novel in fungi DMDSe production both concentration and species dependent Production varies between species Terry et al ARPPPMB 15:
15
GC-MS Sampling Methods
Volatile Organic Compounds (VOCs) in Microorganisms VOCs in Fungi Direct Headspace VOCs in Bacteria Solid-phase Microextraction (SPME)
16
Bacterial VOCs Produced by all species Potential for rapid ID
17
Infection and Lysis Brewster et al JEMI 16:
18
Method Development SPME Escherichia coli K12 MS2 bacteriophage
Multiplicity of infection Bacterial concentration Sampling and infection time SPME/GC-MS settings SPME
19
Time-step Analysis 12-hour 8-hour 4-hour 2-hour 1-hour
20
Conclusions Large variation in VOCs across infection time
Most VOCs show up by 4 hr Other parameters optimized for SPME/GC-MS analysis
21
What does it all mean? Fungus Project
Successful quantitation of selenocompounds Mycoremediation Novel identification of dimethyl diselenide production Ecoevolution Se biochemical pathways Phage Project Preliminary data show good potential Use in bacterial VOC fingerprint development Analysis of foodborne pathogens and other health concerns Thoughts/Conclusions Interesting patterns of volatile production/loss dihydro-2-methyl-3(2H)-thiophenone has only been previously detected in yeast Contamination or novel detection 7-decen-2-one not previously detected in microbe HS
22
Acknowledgements Funding Fungus Project (LCCC) Dr. Ami Wangeline
Sami Haller Josh Sharpe Phage Project Nike Kabwar Jacque Black Holden Bindl (Wyoming EPSCoR SRAP) Basile Lab (UW) Mentor: Dr. Franco Basile Dr. Raj Mahat Mitch Helling Rudy Mignon Funding This project was supported in part by grants from the National Center for Research Resources (P20RR016474) and the National Institute of General Medical Sciences (P20GM103432) from the National Institutes of Health.
23
Thank you Questions?
24
SI
25
1-hour Infection
26
2-hour Infection
27
4-hour Infection Other peaks: t = 2.58 min. (dimethylsilanediol)
t = 3.00 min. (dimethyl disulfide, 98.44%) t = 5.58 min. (dihydro-2-methyl-3(2H)-thiophenone, 91.23%) t = 6.27 min. (1-octanol, 39.85%) t = 7.09 min. (1-nonanol, 8.55%) t = 7.84 min. (1-decanol, 9.66%) t = 8.09 min. (indole, 51.02%) t = 9.21 min. (1-hexadecanol, 5.45%) t = min. (7-decen-2-one , 18.29%)
28
8-hour Infection
29
12-hour Infection
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.