Download presentation
Presentation is loading. Please wait.
Published byJonas Pierce Modified over 6 years ago
1
Indo-Turkey Tripartite Program – Visit to IIT Kanpur
Shri Awadesh Kumar Mallik Scientist Gr IV (1) Central Glass & Ceramic Research Institute, CSIR India
2
Fretting Wear Tester
3
Fretting Test Conditions - linear relative reciprocatory displacement sliding
Ball-on-Flat configuration Normal Load 8 N constant Stoke Length – 100 μm Frequency – 6 Hz No. of Cycles – 45000 Sliding Distance – 9 m Reciprocating Velocity – 1.2 mm/sec Unlubricated Temperature oC Relative Humidity 50%-52% 8N 100 μm, 6 Hz, cycles
4
Types of Counterbodies
B % SiC Flat High Temperature Pressure Less Sintering SiAlON Flat 6 mm diameter Al2O3 balls 10 mm diameter Al2O3 balls 10 mm diameter Si3N4 balls
5
Properties of Counterbodies
6
Roughness before Fretting
7
Friction Curves – SiC Composite
6 mm Al2O3 Running-in Period cycles 6 mm Al2O3 10 mm Al2O3 10 mm Si3N4
8
Friction Curves - HTPLS
Running-in Period cycles 6 mm Al2O3 10 mm Al2O3 10 mm Si3N4
9
3D profile of worn surfaces – SiC Composite
10 mm Al2O3 10 mm Si3N4
10
3D profile after fretting – HTPLS
10 mm Al2O3
11
2D profile after fretting SiC Composite
6 mm Al2O3 10 mm Al2O3
12
2D profile after fretting – SiC Composite
10 mm Si3N4 - SiC
13
Steady state Average COF
Wear & Friction Values Sample Steady state Average COF Wear Volume mm3 Wear Rate mm3N-1m-1 SiC vs 6 mm Al2O3 0.55 7.25 Χ 10-4 1.003 Χ 10-5 SiC vs 10 mm Al2O3 6.1 Χ 10-4 8.472Χ 10-6 SiC vs 10 mm Si3N4 3.1 Χ 10-4 4.305 Χ 10-6 HTPLS vs 6 mm Al2O3 0.69 1.452 Χ 10-3 2.016 Χ 10-5 HTPLS vs 10 mm Al2O3 1.247 Χ 10-3 1.731 Χ 10-5 HTPLS vs 10 mm Si3N4 1.636 Χ 10-4 2.272 Χ 10-6
14
Optical Images of Wear Scar – SiC Composite
6 mm Al2O3 6 mm Al2O3 10 mm Al2O3 10 mm Si3N4
15
Optical Micrograph of Wear Scar of HTPLS
6 mm Al2O3 6 mm Al2O3 10 mm Al2O3 10 mm Si3N4
16
SEM Images of Wear Scars – Least Worn SiC composite against 10 mm Si3N4 balls
Tribo-islands Sliding direction Wear debris inside tribo-island Grain Pull-out
17
Oxygen rich triboislands
Possible Chemical reaction under stress & temperature 2 SiAlON O2 = 2 SiO2 + Al2O3 + N2 SEM images with EDAX Element Weight % Weight % σ Atomic % Carbon 9.726 1.524 16.801 Oxygen 35.956 0.752 46.628 Sodium 0.387 0.102 0.350 Aluminum 3.605 0.115 2.772 Silicon 43.629 0.824 32.230 Potassium 0.372 0.059 0.197 Calcium 0.487 0.061 0.252 Gallium 0.094 0.182 0.028 Samarium 4.171 0.249 0.576 Gold 1.574 0.305 0.166 Abrasive Grooves Oxygen rich triboislands Element Weight % Weight % σ Atomic % Carbon 5.451 0.766 9.225 Nitrogen 32.904 1.039 47.756 Oxygen 3.618 0.457 4.597 Aluminum 2.390 0.091 1.801 Silicon 49.328 0.892 35.705 Calcium 0.292 0.057 0.148 Gallium 0.071 0.179 0.021 Samarium 4.194 0.248 0.567 Gold 1.752 0.306 0.181
18
Highest Worn SiC Composite vs 6 mm Al2O3 ball
Sliding direction Crack Propagation & Fragmentation of Tribo-islands Spalling of tribolayer and wear debris
19
Oxygen rich triboislands
Possible Chemical reaction under stress & temperature 2 SiAlON O2 = 2 SiO2 + Al2O3 + N2 SEM with EDAX Abrasive Grooves Element Weight % Weight % σ Atomic % Carbon 1.721 1.011 2.915 Oxygen 51.630 0.663 65.654 Sodium 2.308 0.116 2.042 Aluminum 8.621 0.168 6.500 Silicon 29.702 0.416 21.516 Potassium 1.578 0.080 0.821 Samarium 2.925 0.220 0.396 Gold 1.515 0.298 0.156 Oxygen rich triboislands Element Weight % Weight % σ Atomic % Carbon 3.710 0.762 6.169 Nitrogen 34.832 0.892 49.673 Oxygen 4.906 0.487 6.125 Aluminum 2.293 0.086 1.697 Silicon 50.435 0.822 35.870 Gallium 0.000 Samarium 2.448 0.221 0.325 Gold 1.377 0.300 0.140
20
Wear Mechanisms Formation of scattered oxygen rich Tribo-islands
Abrasive wear grooves along sliding direction Wear particles on abrasive grooves Crack propagation causing fragmentation of tribolayers Spalling of Tribo-island Wear debris in and around tribo-islands Grain Pull-out Oxidation of abrasive wear particles
21
Low Friction due to Higher Hertzian Contact for bigger balls
Hertzian Contact Pressure Po, Where Po = (3/2) Pm = (6WE *²/π³R²) The initial Contact Diameter is given by, a = (3WR/4E*)⅓ W is the applied load E* is effective Elastic modulus & R is the radius of the ball For a given load 8 N as the ball diameter increases from 6 mm to 10 mm initial contact diameter increases which thereby reduces Hertzian contact pressure Po and hence lower resistance to motion (COF)
22
SEM of Unworn Surfaces
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.