Download presentation
Presentation is loading. Please wait.
Published byKatherine Harrington Modified over 6 years ago
1
In the name of GOD Chapter 1 Basic Ultrasound Physics Tavakoli. M.B,
Isfahan University of Medical Sciences, School of Medicine Department of Medical Physics and Medical Engineering
2
بنام خدا نام و شماره درس: فراصوت و كاربرد آن تعداد و نوع واحد: سه واحد نظري گروه سرويس دهنده: گروه فيزيك و مهندسي پزشكي گروه سرويس گيرنده: گروه فيزيك رشته و مقطع تحصيلي: روز و ساعت محل برگزاري: گروه فيزيك و مهندسيپزشكي سال تحصيلي: نام مدرس: دكتر محمدباقر توكلي آدرس دفتر: دانشكده پزشكي – گروه فيزيك و مهندسي پزشكي هدف كلي درس: آشنائي با مباني و اصول فراصوت و كاربرد آن در پزشكي اهداف اختصاصي: -1 آشنايي با مباني فيزيكي التراسوند -2آشنايي با سيستمهاي التراسونيكي -3 آشنايي با روشهاي تكنيكي التراسونيكي -4آشنايي با اثرات بيولوژيكي التراسوند برنامه درسي در هر جلسه: جلسه اول: اصول فيزيكي صوت و التراسوند جلسه دوم: پراكنش و تضعيف التراسوند در مواد جلسه سوم: ساختمان ترانسدوسر و ويژگيهاي ترانسدوسرها جلسه چهارم: روشهاي ايجاد تصوير بطريقه استاتيك جلسه پنجم: روشهاي تصويرگيري real time جلسه ششم: روشهاي تصويرگيري real time جلسه هفتم: پروسس تصوير و عوامل مؤثر در كيفيت آن جلسه هشتم: آرتيفكت ها در سونوگرافي جلسه نهم: اصول فيزيكي روش داپلر جلسه دهم: ارزيابي تصاوير داپلر
3
جلسه ياازدهم: روش M-Mode
جلسه دوازدهم: مواد حاجب در التراسوند جلسه سيزدهم: اثرات بيولوژيكي جلسه چهاردهم: ملاحظات كلينيكي جلسه پانزدهم: كنترل كيفي و ارزيابي سيستمهاي التراسونيكي جلسه شانزدهم: دستگاههاي درماني فراصوتي منابع اصلي درس: 1- Headrick et al , Ultrasound Physics and Instrumentation, Diagnostic 2- Fish P.S Physics and Instrumentation of Medical Ultrasound, Tohn Willy and Sons 3- Bushong SC and Archer BR. Diagnostic Ultrasound Physics, Biology and Instrumentation, Mosby, Yearbook, London -4روشهاي پيشرفته تصويربرداري ، دكتر محمدباقر توكلي ، انتشارات دانشگاه علوم پزشكي نحوه ارزشيابي: الف) حضور در كلاس و انجام تكاليف كلاسي و شركت درمباحث كلاس 2 نمره ب) امتحان ميان ترم نمره ج ) امتحان پايان ترم نمره
4
Basic Ultrasound Physics continue
Sound Wave: Is a type of mechanical energy that is transmitted through medium. Propagation: Sound wave propagate through deformation of the elastic medium Sound wave spectrum: Is divided into three region of Inferasound (f<20Hz); Sound (f=20 to 20000Hz) and Ultrasound (f>20kHz) Wave equation: A=A0sin (ωt+θ) A=amplitude; A0=Maximum amplitude; θ=initial phase and ω =2пf f=1/T
5
Basic Ultrasound Physics continue
Types of sound wave: Longitudinal Shear wave Compressibility: The fractional decrease in volume when pressure applied to the material. Bulk modulus=-stress/strain The reciprocal of compressibility is bulk modulus β(bulk modulus)=1/ K (compressibility of medium)
6
Sound velocity Sound velocity c(m./sec)=f(1/sec or Hz)λ(m)
Sound velocity depends on compressibility (K) c=1/(Kρ)1/2=(β/ ρ)1/2 In materials with higher compressibility velocity of sound is less and Vic versa
7
Typical values for diagnostic ultrasound:
Ultrasound f > 20KHz f : 1 to 10 MHz λ : 1.5 to 0.15 mm in muscle I (Acoustic Intensity)< Acoustic Pressure P<0.57 bar Units : Pascal (Pa) 1Pa=1N/M2=10μbar Particle velocity v<3.5 cm/s Elongation ξ < 2*10-6 Particle acceleration < 7*104 g
8
Acoustic Impedance Z is the acoustic impedance Acoustic Pressure: P=Zv
It can be show that
9
Interaction of ultrasound with tissue
Reflection Refraction Diffraction Scatter Absorption
10
Reflection According to Snell laws
1-Incident and reflected angles are equal αi = θr 2-the relation between incident and transmission angles is: Sinαi/ Cosαt=c1/c2 3-All of the incident reflection and transmitted rays are in the same plane Energy transmission and reflection percentages are:
11
For specular reflection:
Amplitude reflection coefficient r : Energy transmitted and reflection coefficient t : The continuity condition is: R+T=1
12
Scattering Is = Intensity of scattered sound
σ = Scattering cross section When a<λ then Rayleigh scattering=>Iαf2 to f6
13
Refraction Sinαi/ Cosαt=c1/c2
14
Diffraction Diffraction cause ultrasound beam to diverge
The rate of divergence increase with diameter of the source
15
Interference Sound wave demonstrate interference phenomena
If they are in phase and with the same frequencies=>instructive effect If they are out of phase and or with different frequencies=>destructive effect
16
Absorption The only process that sound energy dissipate in medium
Factors influencing absorption: Frequency of the sound Viscosity of the medium Relaxation time of the medium
17
J= ultrasonic intensity at depth z J0= ultrasonic intensity at depth0
Absorption Jz=J0e-2βz J= ultrasonic intensity at depth z J0= ultrasonic intensity at depth0 β = absorption coefficient in Np/cm Attenuation coefficient=α=2 β α attenuation coefficient in dB
18
In biological tissue usually
β0= 0absorption coefficient at f0(1 MHz) Relative absorption attenuation usually given by
19
Basic Physics mechanical phenomena Spectrum
Displaced of particle around the rest position v= velocity of motion ξ = elongation Acoustic pressure : difference between pressure at any line and normal state Units : Pascal (Pa) 1Pa=1N/M2=10μbar
21
Propagation velocity = C
E = modulus of elasticity ρ = density of rest C =λf Acoustic Pressure: P=Zv It can be show that
22
For a particular particle velocity, the greater impedance,
the greater the acoustic pressure that has to be generated. Power Density : Infautaneous power passing through a unit area is :
23
Typical values for diagnostic ultrasound:
Ultrasound f > 20KHz f : 1 to 10 MHz λ : 1.5 to 0.15 mm in muscle J (Acoustic Intensity)< Acoustic Pressure P<0.57 bar Particle velocity v<3.5 cm/s Elongation ξ < 2*10-6 Particle acceleration < 7*104 g
25
Wave equation and the plane wave
For a plan wave using Newton’s second low for a mass m and spring force k(z) and k(z+Δz) :
26
Wave equation and the plane wave
27
Wave equation and the plane wave
28
Wave equation and the plane wave
29
Physical effects Reflection Refraction Diffraction Scatter Absorption
30
Reflection The continuity condition is:
31
Refraction Diffraction
32
Scattering Pa = Intensity of scattered sound
σ = Scattering cross section
33
Kτ=0.5 for good transducer
Transmission For dynamic case in the region of resonance frequencies Kτ=0.5 for good transducer
34
Transducer factors k=hg k = Electromechaanical coupling coefficient
h = Transmission coefficient g = Reception coefficient k=hg ε = Dielectric constant depends on electric and mechanical properties of transducer. It is important in strain of the transducer. Transducer sensitivity depend of reception coefficient and strain and ε.
35
Matching layer Quality factor (Q) Zω(matching layer impedance)=antilog
Thickness = m λ/4 Quality factor (Q)
36
Acoustic beam : must be as narrow as possible with sharp fall off
at the edges The intensity in front of a piston transducer Sound pressure from each element interfere with each other Make a near field ( Fernel zone) and far field ( Franhofer zone) at boundary Z=a2/λ Beam angle at the boundary Natural focus ( between far and near field) at Zf with focal diameter df
38
Image limitation Penetration depth Signal dynamic Special resolution
39
Ultrasonic technique Pulse echo Real time A-scan B-scan M-mode Doppler
40
A-scan Main part Clock pulse repetition frequency (PRF)
Ultrasonic velocity Depth of investigation Number of line per image Filter Transmitter Receiver TGC+Amplifier Radio Amp. Video Amp. Time generator Processing
41
B-scan One dimension Two dimension
42
M-mode
43
Commercial system Mechanical Linear Sector Electrical
44
Mechanical sector scanner
Advantages Simple Cheap Acceptable resolution Disadvantage Noise Mechanical fracture Reverberation Sector field
45
Electronic Scanners Linear Typical values: Number of elements 60-120
Elements width (b) 1-4 λ Frequency 3.5-7MHz Length of ceramic (L) cm Scanning length (image width) 2-10 cm
46
Sector Electronic focusing
47
Velocity determination
Optimum frequency for doppler is f0=90/R R = soft tissue distance from target Suitable frequency=2 MHz for deep 5-7 MHz for superficial Doppler examination continues wave pulse wave
48
C.W doppler Need two transducer Can not be used for range resolution
Filter High pass filter Low pass filter T Oscillator R RF Amp. Demodulator Audio Amp. Filter Output Device
49
Pulse wave doppler Use pulse Select depth of interest
50
Instrument design of P.W doppler
Oscillator clock Transmit Gate T Range Delay RF Amp. R Length Delay Demodulator Receive Gate Samplet Hold Audio Amp. Filter Out put Device
51
Velocity detection limit
52
Directional method Single side band detector High Pass Filter Mixer
Forward Direction Amp. Ref. signal Low Pass Filter Mixer Side Band Filter Reversed Direction
53
Directional method Heterodyne detector Mixer Channel A Filter In phase
Ref. Signal Out of phase Amp. Mixer Filter Channel B
54
Quadratic phase detector
Pilot Frequency in phase Channel B Mixer Out put Adder Mixer Channel A Pilot Frequency Out of phase
55
Color flow imaging Duplex scanners spectral Analysis Power spectrum
56
Doppler systems
57
Quality controls (Q.A) Axial resolution Lateral resolution Penetration depth and sensitivity Dynamic range Accuracy Hand copy performance
58
Biological effects
60
ULTRASOUND Tavakolli.M.B,PhD Medical University of Isfahan
Faculty of Medicine Department of Medical Physics and Engineering
61
Basic Physics Mechanical Phenomena Sound wave Spectrum Velocity of sound Transmission through a barrier Attenuation Production and detection Ultrasonic field in front of a transducer Resolution Ultrasonic systems
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.