Download presentation
Presentation is loading. Please wait.
1
Digital Image Processing 0909.452.01/0909.552.01 Fall 2001
Lecture 3 September 24, 2001 Shreekanth Mandayam ECE Department Rowan University
2
Plan Pixel Operations Point processing Histogram equalization
Connectivity Image Enhancement Spatial Filtering Detection of Discontinuities Edge detection (Sobel, Prewitt and Laplacian masks) individual pixels all pixels neighboring pixels Low-pass High-pass
3
DIP: Details
4
Pixel Connectivity x (x-1,y-1) (x,y-1) (x+1,y-1) y (x-1,y) (x,y)
5
Labeling of Connected Components
Begin scan Update position (x,y) Position: (x,y) p(x,y) = 1? All positions scanned? y p(x-1,y) = 1? y class(x,y) = class(x-1,y) p(x,y-1) = 1? y class(x,y) = class(x,y-1) y End scan p(x-1,y) AND p(x,y-1) = 1? y class(x-1,y) = class(x,y-1) class(x,y) = new class
6
Image Preprocessing Enhancement Restoration Inverse filtering
Wiener filtering Spatial Domain Spectral Domain Filtering >>fft2/ifft2 >>fftshift Point Processing >>imadjust >>histeq Spatial filtering >>filter2
7
Spatial Filtering (Masking)
Portion of a digital image Mask z1 z2 z3 z4 z5 z6 z7 z8 z9 w1 w2 w3 w4 w5 w6 w7 w8 w9 Replace with R = w1z1 + w2z2 + ….. +w9z9
8
Low-pass Filters Moving Average Filter 1 (1/9)* Median Filter z1 z2 z3
Replace with R = median(z1, z2 , ….. , z9)
9
Noise Models SNRg = 10log10(Pf/Pn) SNRg = 10log10(sf2/ sn2) f(x,y)
g(x,y) n(x,y) S Degradation Model: g = f + n SNRg = 10log10(Pf/Pn) Power Variance (how?) SNRg = 10log10(sf2/ sn2)
10
Noise Models N(0,1): zero-mean, unit-variance, Gaussian RV Theorem:
N(0,s2) = sN(0,1) Use this for generating normally distributed r.v.’s of any variance >>imnoise >>nrfiltdemo >>filter2 demos/demo2spatial_filtering/lowpassdemo.m
11
High-pass Filters Basic HP Filter -1 8 (1/9)* Gradient Filter z1 z2 z3
-1 1 -1 demos/demo2spatial_filtering/highpassdemo.m
12
Detection of Discontinuities
-1 8 Point Detection Line Detection (Prewitt’s Gradient) -1 1 -1 1 2 demos/demo2spatial_filtering/prewitt.m
13
Edge Detection Sobel Masks -1 -2 1 2 -1 1 -2 2 >>edgedemo
1 2 -1 1 -2 2 >>edgedemo >>edge demos/demo2spatial_filtering/edgegradientdemo.m
14
Lab 1: Pixel Operations
15
Summary
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.