Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm Up Find the value of x: 1. 2..

Similar presentations


Presentation on theme: "Warm Up Find the value of x: 1. 2.."— Presentation transcript:

1 Warm Up Find the value of x: 1. 2.

2 Converse Angle Theorems
Chp 3.3

3 Review of the Term “Converse”
Conditional statements have a hypothesis (p) and a conclusion (q): If Mrs. York is in a bad mood (p), then she will eat a lot of chocolate (q). CONVERSE means you just switch the p and the q: If Mrs. York eats a lot of chocolate (q), then she is in a bad mood (p) Some theorems in geometry (like the angle pair theorems we learned) have matching CONVERSE theorems.

4 Corresponding Angles Converse Theorem
Here is the theorem you already know (corresponding angles theorem): IF THEN two parallel lines are cut by a transversal Corresponding angles are congruent Here is the corresponding angles CONVERSE theorem: Two lines are cut by a transversal and corresponding angles are congruent IF THEN The two lines must be parallel

5 Corresponding Angles Converse Theorem - Example
** in order for the lines to be parallel , the corresponding angles MUST be congruent. So: 3x + 5 = 65 Use the Corresponding Angle Converse Theorem to write an equation 3x = 60 Subtraction Property Equality x = 20 Division Property Equality ** so if x = 20, the corresponding angles are congruent, and that means line m is parallel to line n.

6 Alternate Interior Angles Converse Theorem
Theorem you already know (alternate interior angles theorem): two parallel lines are cut by a transversal Alternate interior angles are congruent IF THEN Here is the alternate interior angles CONVERSE theorem: Two lines are cut by a transversal and alternate interior angles are congruent IF THEN The two lines must be parallel

7 Alternate Exterior Angles Converse Theorem
Theorem you already know (alternate exterior angles theorem): two parallel lines are cut by a transversal Alternate exterior angles are congruent IF THEN Here is the alternate exterior angles CONVERSE theorem: Two lines are cut by a transversal and alternate exterior angles are congruent IF THEN The two lines must be parallel

8 Consecutive Interior Angles Converse Theorem
Theorem you already know (consecutive interior angles theorem): two parallel lines are cut by a transversal Consecutive interior angles are supplementary IF THEN Here is the consecutive interior angles CONVERSE theorem: The two lines must be parallel Two lines are cut by a transversal and consecutive interior angles are supplementary IF THEN

9 Transitive Property of Parallel Lines
If two lines are parallel to the same line, then they are parallel to each other

10 Examples: 5x + 8 = 53 Alternate Interior Angles Converse Thm 5x = 45
Subtraction Prop. Equality x = 9 Division Prop. Equality x + 73 = 180 Consecutive Interior Angles Converse Thm x = 107 Subtraction Prop. Equality They are parallel. Angle x is 75⁰ because it is a linear pair with 105⁰ (180 – ) Angle x and the other 75⁰ angle are corresponding and congruent. x


Download ppt "Warm Up Find the value of x: 1. 2.."

Similar presentations


Ads by Google