Presentation is loading. Please wait.

Presentation is loading. Please wait.

IT ARCHITECTURES CHAPTER 5 McGraw-Hill/Irwin

Similar presentations


Presentation on theme: "IT ARCHITECTURES CHAPTER 5 McGraw-Hill/Irwin"— Presentation transcript:

1 IT ARCHITECTURES CHAPTER 5 McGraw-Hill/Irwin
Copyright © 2009 by The McGraw-Hill Companies, Inc. All Rights Reserved.

2 Chapter Five Overview SECTION 5.1 - HARDWARE AND SOFTWARE BASICS
Hardware Basics Computer Categories Software Basics SECTION 5.2 – MANAGING ENTERPRISE ARCHITECTURES Enterprise Architectures Information Architecture Infrastructure Architecture Application Architecture

3 5-3 SECTION 5.1 HARDWARE AND SOFTWARE

4 LEARNING OUTCOMES Describe the six major categories of hardware and provide an example of each Identify the different computer categories and explain their potential business uses Explain the difference between primary and secondary storage

5 LEARNING OUTCOMES List the common input, output, storage, and communication devices Describe the eight categories of computers by size Define the relationship between operating system software and utility software

6 INTRODUCTION Information technology (IT) - any computer-based tool that people use to work with information and support the information and information-processing needs of an organization Hardware - consists of the physical devices associated with a computer system Software - the set of instructions that the hardware executes to carry out specific tasks

7 HARDWARE BASICS Computer - an electronic device operating under the control of instructions stored in its own memory that can accept, manipulate, and store data Hardware components include: Central processing unit (CPU) Primary storage Secondary storage Input device Output device Communication device

8 HARDWARE BASICS

9 Central Processing Unit
Central processing unit (CPU) (or microprocessor) - the actual hardware that interprets and executes the program (software) instructions and coordinates how all the other hardware devices work together Control unit - interprets software instructions and literally tells the other hardware devices what to do, based on the software instructions Arithmetic-logic unit (ALU) - performs all arithmetic operations (for example, addition and subtraction) and all logic operations (such as sorting and comparing numbers)

10 Central Processing Unit
The number of CPU cycles per second determines the speed of a CPU Megahertz (MHz) - the number of millions of CPU cycles per second Gigahertz (GHz) - the number of billions of CPU cycles per second

11 Central Processing Unit
CPU speed factors Clock speed Word length Bus width Chip line width Binary digit (bit) - the smallest unit of information that a computer can process Byte - a group of eight bits representing one natural language character

12 Advances in CPU Design Complex instruction set computer (CISC) chip - type of CPU that can recognize as many as 100 or more instructions, enough to carry out most computations directly Reduced instruction set computer (RISC) chip - limit the number of instructions the CPU can execute to increase processing speed Virtualization - a protected memory space created by the CPU allowing the computer to create virtual machines

13 Primary Storage Primary storage - the computer’s main memory, which consists of the random access memory (RAM), cache memory, and the read-only memory (ROM) that is directly accessible to the CPU

14 Random Access Memory (RAM)
Random access memory (RAM) - the computer’s primary working memory, in which program instructions and data are stored so that they can be accessed directly by the CPU via the processor’s high-speed external data bus Volatility Cache memory

15 Random Access Memory (RAM)

16 Read-Only Memory (ROM)
Read-only memory (ROM) - the portion of a computer’s primary storage that does not lose its contents when one switches off the power Flash memory Memory card Memory stick

17 Secondary Storage Secondary storage - consists of equipment designed to store large volumes of data for long-term storage Megabyte (MB or M or Meg) - roughly 1 million bytes Gigabyte (GB) - roughly 1 billion bytes Terabyte (TB) - roughly 1 trillion bytes

18 Secondary Storage

19 Magnetic Medium Magnetic medium - a secondary storage medium that uses magnetic techniques to store and retrieve data on disks or tapes coated with magnetically sensitive materials Magnetic tape - an older secondary storage medium that uses a strip of thin plastic coated with a magnetically sensitive recording medium Hard drive - a secondary storage medium that uses several rigid disks coated with a magnetically sensitive material and housed together with the recording heads in a hermetically sealed mechanism

20 Optical Medium Optical medium types include:
Compact disk-read-only memory (CD-ROM) Compact disk-read-write (CD-RW) drive Digital video disk (DVD) DVD-ROM drive Digital video disk-read/write (DVD-RW)

21 Input Devices Input device - equipment used to capture information and commands Manual input devices Joystick Keyboard Microphone Automated input devices Bar code scanner Digital camera Magnetic ink character reader

22 Output Devices Output device - equipment used to see, hear, or otherwise accept the results of information processing requests Cathode-ray tube (CRT) Liquid crystal display (LCD) Laser printer Ink-jet printer Plotter

23 Communication Devices
Communication device - equipment used to send information and receive it from one location to another Dial-up access Cable Digital subscriber line Wireless Satellite

24 COMPUTER CATEGORIES For the past 20 years, federally funded supercomputing research has given birth to some of the computer industry’s most significant technology breakthroughs including: Clustering Parallel processing Mosaic browser

25 COMPUTER CATEGORIES Computer categories include:
Personal digital assistant (PDA) Laptop Tablet Desktop Workstation Minicomputer Mainframe computer Supercomputer

26 SOFTWARE BASICS System software - controls how the various technology tools work together along with the application software Operating system software Utility software Application software

27 Utility Software Types of utility software Crash-proof Disk image
Disk optimization Encrypt data File and data recovery Text protect Preventative security Spyware Uninstaller

28 Application Software Types of application software Bowser
Communication Data management Desktop publishing Groupware Presentation graphics Programming Spreadsheet Word processing

29 OPENING CASE QUESTIONS Electronic Breaking Points
Identify six hardware categories and place each product listed in the case in its appropriate category Describe the CPU and identify which products would use a CPU Describe the relationship between memory sticks and laptops. How can a user employ one to help protect information loss from the other? What different types of software might each of the products listed in the case use?

30 Enterprise Architecture
5-30 SECTION 5.2 Enterprise Architecture

31 LEARNING OUTCOMES Explain the three components of an enterprise architecture Describe how an organization can implement a solid information architecture List and describe the five ilities of an infrastructure architecture Compare Web services and open systems

32 ENTERPRISE ARCHITECTURES
Enterprise architecture - includes the plans for how an organization will build, deploy, use, and share its data, processes, and IT assets Enterprise architect (EA) - a person grounded in technology, fluent in business, a patient diplomat, and provides the important bridge between IT and the business

33 ENTERPRISE ARCHITECTURES
Primary goals of enterprise architectures

34 ENTERPRISE ARCHITECTURES

35 INFORMATION ARCHITECTURE

36 Backup and Recovery Backup - an exact copy of a system’s information
Recovery - the ability to get a system up and running in the event of a system crash or failure and includes restoring the information backup Fault tolerance Failover

37 Disaster Recovery Disaster recovery best practices include:
Mind the enterprise architectures Monitor the quality of computer networks that provide data on power suppliers and demand Make sure the networks can be restored quickly in the case of downtime Set up disaster recovery plans Provide adequate staff training, including verbal communication protocols “so that operators are aware of any IT-related problems

38 Disaster Recovery Financial Institutions Worldwide Spending on Disaster Recovery

39 Disaster Recovery Disaster recovery plan - a detailed process for recovering information or an IT system in the event of a catastrophic disaster such as a fire or flood Disaster recovery cost curve - charts (1) the cost to the organization of the unavailability of information and technology and (2) the cost to the organization of recovering from a disaster over time Hot site Cold site

40 Disaster Recovery Cost Curve

41 Information Security A good information architecture includes:
A strong information security plan Managing user access Up-to-date antivirus software and patches

42 INFRASTRUCTURE ARCHITECTURE

43 INFRASTRUCTURE ARCHITECTURE
Five primary characteristics of a solid infrastructure architecture: Flexibility Scalability Reliability Availability Performance

44 APPLICATION ARCHITECTURE
Application architecture - determines how applications integrate and relate to each other

45 Web Services Web service - contains a repertoire of Web-based data and procedural resources that use shared protocols and standards permitting different applications to share data and services Interoperability - the capability of two or more computer systems to share data and resources, even though they are made by different manufacturers

46 Web Services Event - detect threats and opportunities and alert those who can act on the information Service - more like software products than they are coding projects, and must appeal to a broad audience, and they need to be reusable if they are going to have an impact on productivity

47 Open Systems Open system - a broad, general term that describes nonproprietary IT hardware and software made available by the standards and procedures by which their products work, making it easier to integrate them Allow systems to seamlessly share information Capitalize on enterprise architectures Eliminate proprietary systems and promote competitive pricing

48 OPENING CASE QUESTIONS Electronic Breaking Points
How can an organization use an information architecture to protect its IT investment in electronic devices outlined in the case? How can an organization use the devices mentioned in the case to protect information security? Identify the five ilites and rank them in order of importance for a laptop (1 highest, 5 lowest) Describe how a “Customer Phone Number” Web service could be used by one of the products outlined in the case

49 CLOSING CASE ONE Chicago Tribune
Review the five characteristics of infrastructure architecture and rank them in order of their potential impact on the Tribune Co.’s business What is the disaster recovery cost curve? Where should the Tribune Co. operate on the curve? Define backups and recovery. What are the risks to the Tribune’s business if it fails to implement an adequate backup plan?

50 CLOSING CASE ONE Chicago Tribune
Why is a scalable and highly available enterprise architecture critical to the Tribune Co.’s current operations and future growth? Identify the need for information security at the Tribune Co. How could the Tribune Co. use a classified ad Web service across its different businesses?

51 CLOSING CASE TWO UPS in the Computer Repair Business
Do you think UPS’s entrance into the laptop repair business was a good business decision? Why or why not? Identify the different types of hardware UPS technicians might be working on when fixing laptops Assume you are a technician working at UPS. Explain to a customer the different types of memory and why only certain types of data are lost during a computer failure. Also identify a potential backup strategy you can suggest to the customer Assume you are a technician working at UPS. Explain to a customer the different types of software found in a typical laptop

52 CLOSING CASE THREE Fear the Penguin
How does Linux differ from traditional software? Should Microsoft consider Linux a threat? Why or why not? How is open source software a potential trend shaping organizations?

53 CLOSING CASE THREE Fear the Penguin
How can you use Linux as an emerging technology to gain a competitive advantage? Research the Internet and discover potential ways that Linux might revolutionize business in the future


Download ppt "IT ARCHITECTURES CHAPTER 5 McGraw-Hill/Irwin"

Similar presentations


Ads by Google