Download presentation
Presentation is loading. Please wait.
1
ELEC 3105 Basic E&M and Power Engineering
The Transformer 1
2
Review: Faradayβs law of induction
X X B field into page π π L π π =β ππ½ ππ =β π π© β π³ π π ππ L Case A: If B and L and orientation, π , constant π π =β π π© β π³ π π ππ =π No voltage on terminals
3
Review: Faradayβs law of induction
X X B field into page π π L π π =β ππ½ ππ =β π π© β π³ π π ππ L Case B: If B changes as a function of time with L and orientation, π , constant π΅ =β π΅ πππ₯ sinβ‘(ππ‘) π Voltage on terminals due to a changing magnetic field π π = ππ³ π π© πππ ππ¨π¬β‘(ππ)
4
Review: Faradayβs law of induction
X B field into page X π π L π π =β ππ½ ππ =β π π© β π³ π π ππ L Case C: If B and orientation, π , constant with L increasing as a function of time and π π =ππ ππ΄ ππ X X X π π L X X X π£ Voltage on terminals βLinear motorβ βRail Gunβ M
5
Review: Faradayβs law of induction
X B field into page X π π L π π =β ππ½ ππ =β π π© β π³ π π ππ L Case D: If B and L constant with orientation, π , changing as a function of time and π΅ ππ‘ π π =π π³ π ππππ ππ π Voltage on terminals βRotational motorβ βGeneratorβ π΅ β π =π΅πππ ππ‘
6
Transformer Loop on source side βPrimaryβ
Loop on load side βSecondaryβ Zg π π π΅(π‘) πβ² π Zload I(t) Transformer Transformer optimize coupling, perform transformation N1 N2 core Primary Secondary
7
Only a few field lines pass through secondary
Transformer N1 N2 core Primary Secondary Core: Designed such that as much π© produced in the primary passes to the secondary Iron core Only a few field lines pass through secondary Magnetic circuit guides field lines from primary to secondary
8
Transformer Voltage relation
ON PRIMARY SIDE One loop Two loops Area A Area 2A X X ο=BA ο=2BA Three loops N1 loops Area 3A Area N1A X X ο=3BA ο=N1BA
9
Transformer Voltage relation
ο1=BA Flux for each loop on primary N1 loops Area N1A π π X ο=N1BA Voltage produced for N1 loops π π =β ππ½ ππ = π΅ π β ππ©π¨ ππ ON PRIMARY SIDE Voltage produced for one loop π π π = π΅ π β ππ©π¨ ππ
10
Transformer Voltage relation
ON SECONDARY SIDE One loop Two loops Area A Area 2A X X οβ=BA οβ=2BA Three loops N2 loops Area 3A X X Area N2A οβ=3BA οβ=N2BA
11
Transformer Voltage relation
N2 loops ο1β=BA Flux for each loop on secondary X Area N2A πβ² π οβ=N2BA Voltage produced for N2 loops πβ² π =β ππ½β² ππ = π΅ π β ππ©π¨ ππ ON SECONDARY SIDE Voltage produced for one loop π π π = π΅ π β ππ©π¨ ππ
12
Transformer Voltage relation
Area N1A Prefect flux coupling π π π X ο=N1BA X Area N2A π π π = π΅ π β ππ©π¨ ππ π π π οβ=N2BA 12 combine π π π = π΅ π β ππ©π¨ ππ π π π π΅ π = π π π π΅ π Voltage transformation
13
Transformer Current relation
π π (π) IDEAL TRANSFORMER No power loss π π π X N1 X Voltage transformation N2 π π π π΅ π = π π π π΅ π π π π π π (π) 13 Power (IN) Power (OUT) π· ππ = π π π π π π combine π· πππ = π π π π π π π π π π΅ π = π π π π΅ π Current transformation
14
Transformer impedance relation
π π (π) IDEAL TRANSFORMER No power loss π π π X N1 X π π π π΅ π = π π π π΅ π N2 π π π Zload 14 combine π π (π) Zeq looking into transformer π π π π΅ π = π π π π΅ π π ππ = π΅ π π΅ π π π ππππ
15
Transformer impedance relation
π π (π) IDEAL TRANSFORMER No power loss π π π X N1 X N2 π π π Zload 15 π π (π) π π (π) π π π Zeq N1 π ππ = π΅ π π΅ π π π ππππ
Remove transformer
16
Transformer Calculation Example
A 10-kVA; 6600/220 V/V; 50 Hz transformer is rated at 2.5 V/Turn of the winding coils. Assume that the transformer is ideal. Calculate the following: A) step up transformer ratio B) step down transformer ratio C) total number of turns in the high voltage and low voltage coils D) Primary current as a step up transformer E) Secondary current as a step down transformer. SOLUTION PROVIDED IN CLASS
17
Transformer Calculation Example
N1 βPrimaryβ N2 βSecondaryβ 2β¦ π π πβ² π 32Ξ© I(t) Find N1/N2 ratio such that maximum power transfer to the load is observed. π ππ = π΅ π π΅ π π π ππππ
SOLUTION PROVIDED IN CLASS
18
Maximum Power to Load Work in phasor domain π π
Zs π π Zload πΌ = π π = π π π + π ππππ I(t) In general: π§ π = π
π +π π π π§ ππππ = π
ππππ +π π ππππ πΌ = π π
π + π
ππππ +π π π + π ππππ Then Find maximum π= πΌ 2 π
ππππ 2 Time average power to load
19
Maximum Power to Load Find maximum π= π π
π + π
ππππ π π + π ππππ π
ππππ 2 Step 1: Make ( ) as small as possible with respect to the complex βreactanceβ part π ππππ =β π π π= π π
π + π
ππππ π
ππππ 2 Find maximum
20
Maximum Power to Load Rs= 50β¦ π π 2 =200 Find maximum Rload= 50β¦
π= π π
π + π
ππππ π
ππππ 2 Rs= 50β¦ π π 2 =200 Find maximum Rload= 50β¦ Maximum Power to Load π§ π = π
π +π π π π§ ππππ = π
π βπ π π
21
Transformer Types Autotransformer Ip Is N1 N2 Primary Secondary core
Starting motors ELEC 4602
22
Transformer Types Single phase Ip Is N1 N2 core Primary Secondary
23
Transformer Types Single phase
24
Transformer Types Maximum power transfer to the load
25
Transformer Types Center tapped Ip Is1 Vs1 Ns1 N1 Is2 Ns2 Vs2 core
ground core Primary Secondary With ground Vs1 180o out of phase with Vs2. Two phase household
26
Transformer Types
27
Transformer Types Center tapped Ip Is1 Vs1 Ns1 N1 Is2 Ns2 Vs2 core
ground core Primary Secondary With ground Vs1 180o out of phase with Vs2. Two phase household
28
Transformer Types Center tapped
29
Transformer Types NA1 NAβ2 A Aβ NB1 NBβ2 B Bβ NC1 NCβ2 C Cβ
Three phase
30
Interconnection Transformer Types
31
Transformer Types
32
Transformer Types
33
Transformer Types n turns ratio
34
Three phase AC to DC converter
Topic of ELEC 3508: Power Electronics
35
Power distribution
36
Three phase power transformers
LabVolt Module used in ELEC 3508
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.