Presentation is loading. Please wait.

Presentation is loading. Please wait.

LFR first PFM calibration results

Similar presentations


Presentation on theme: "LFR first PFM calibration results"— Presentation transcript:

1 LFR first PFM calibration results
LFR sweep F0 F1 F2 SWF (9 config, 2 imp.) LFR LF sweep F1 F2 F3 CWF (3 config, 2 imp.) LFR background SWF, CWF, ASM (13 config, 3 imp.) LFR internal cal + 5 thermal steps ... Thomas Chust and the LFR team

2 LFR 11 analogue inputs

3 LFR Decimation and Processing Strategy
:256 :6 (20 bits ?) 8 ADCs @ Hz decimation down to ß Hz ( F0 ) (14 bits ideally) :16 :6 (18 bits ?) (15 bits) Hz 4 096 Hz 256 Hz 16 Hz shaping :6 (16 bits) :4 ( F1 ) ( F2 ) ( F3 ) ( F0 ) 2  E 3  B 1  V 2  E 3  B 2  E 3  B 1  V 2  E 3  B 2  E 3  B 1  V 2  E 3  B 1  V 2  E (3  B) FFT FFT FFT (15 bits) Spectral matrices (ASM) Waveforms (WF) Spectral matrices (ASM) Waveforms (WF) Spectral matrices (ASM) Waveforms (WF) Waveforms (WF) Basic parameters (BP) Basic parameters (BP) Basic parameters (BP)

4 BIAS 5 analog inputs and the R-parameters
DC V (G=1/15) DC dV ~ E (G=1) AC dV ~ E (G=5 or 100, cutoff~8Hz) R2

5 BIAS CALIBRATION M+50_P+20_S-50_H+20
sweep @F0, F1, F2 (SWF)

6 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_ (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

7 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_ (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

8 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_ (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

9 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_1M_ (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

10 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF1_F0_F1_F2_100K_ (SE : V1_DC, V2_DC, V3_DC ; Gain = 1/17) [ BIAS_1, BIAS_2, BIAS_3 ]

11 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-22
(DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

12 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_ (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

13 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_ (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

14 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_ (DIFF : V13_DC, V23_DC ; Gain = 1) [BIAS_2, BIAS_3 ]

15 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M
(DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

16 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

17 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

18 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ] PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M (DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

19 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_2016-11-23
(DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

20 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_ (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

21 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_ (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

22 M+50_P+20_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_1M_ (DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

23 PFM_CAL_LFR_SWEEP_CONF6_F0_F1_F2_100K_2016-11-23
(DIFF : V12_AC, V23_AC ; Gain = 100) [BIAS_4, BIAS_5 ]

24 SCM CALIBRATION M+20_P+50_S-50_H+20 sweep @F0, F1, F2 (SWF)

25 M+20_P+50_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_

26 M+20_P+50_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_

27 M+20_P+50_S-50_H+20 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_

28 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M_2016-11-26

29 TEMPERATURE EFFECTS ? M+50_P+20_S-50_H+20 M+20_P+50_S-50_H+20
sweep @F0, F1, F2 (SWF)

30 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M
(DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

31 PFM_CAL_LFR_SWEEP_CONF5_F0_F1_F2_1M
(DIFF : V13_AC, V23_AC ; Gain = 5) [BIAS_4, BIAS_5 ]

32 PFM_CAL_LFR_SWEEP_CONF2_F0_F1_F2_1M_2016-11-15

33 PFM_CAL_LFR_SWEEP_CONF3_F0_F1_F2_1M_2016-11-25

34 PFM_CAL_LFR_SWEEP_CONF2_F0_F1_F2_1M_2016-11-15

35 Preliminary PFM calibration conclusion
BIAS TF : ~OK on the amplitudes (could be improved for f > 1 kHz ?) SCM TF: not OK on the amplitudes (up to ~35% discrepancy at ~1 kHz) Analyses done with F0, F1, F2 sweep (still not with LF F3) Still no analysis done with the phases Still no analysis done on background levels Temperature effects on LFR appears negligible ( LFR-SCM : ≤ ~1% variation from -20°C to +50°C LFR-BIAS : < 1% variation from +20°C to +50°C )

36 Additional slides

37 RPW Instrument Overview
Will allow the characterization of the electric and magnetic fields associated to the dynamics of the near-Sun heliosphere from near DC up to 20 MHz Main Electronic Box (MEB) Electric Antennas (ANT) 3xV V LF Bias Unit V Sp W 1 1HF Floating volt age dr iver V 5xV BIAS 2HF V 3HF 3xV HF TNR-HFR V Auto & cr oss-spectr a Sp W 1LF 1xB (4kHz-20MHz) V HF 2LF V V V 2 3LF 3 3xV Nom. SpW HF TDS to/from S/C 1xB HF Wavefor 500kS/s Sp W 3xV BIAS + LFR Redundancy RPW-DPU Search Coil Magnetometer 3xB LF (SCM) Red. SpW to/from S/C B 1LF 5xV LFR BIAS Waveform up to 25kS/s 3xV Sp W B HF 2LF + Auto & cross- spectr a 3xB LF + k- vector (~DC-10kHz) B 3LF 3.3V 2. 5V 5V +/ -1 2V B 3HF 28 V LVPS-PDU from S/C Low Frequency Receiver

38 Current set of Basic Parameters
“Instantaneous” 5 x 5 spectral matrix (256 FFT points) Time Averaged Spectral Matrix (ASM) 𝐀𝐒𝐌 ω 𝑗 𝑚 = 1 𝑁 𝑆𝑀 𝑚 𝑘=1 𝑁 𝑆𝑀 𝑚 𝐒𝐌 𝑘 ω 𝑗 𝑚 = 𝐒𝐌 𝑡𝑖𝑚𝑒 𝐒𝐌 ω 𝑗 𝑚 = 𝐵 1 𝐵 1 ∗ 𝐵 1 𝐵 2 ∗ 𝐵 1 𝐵 3 ∗ 𝐵 1 𝐸 1 ∗ 𝐵 1 𝐸 2 ∗ 𝑐𝑐 𝐵 2 𝐵 2 ∗ 𝐵 2 𝐵 3 ∗ 𝐵 2 𝐸 1 ∗ 𝐵 2 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝐵 3 𝐵 3 ∗ 𝐵 3 𝐸 1 ∗ 𝐵 3 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝐸 1 𝐸 1 ∗ 𝐸 1 𝐸 2 ∗ 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝑐𝑐 𝐸 2 𝐸 2 ∗ Frequency average ... 𝐒 ω 𝑗 𝑚 = 𝐀𝐒𝐌 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 ... before computations of the BPs (i.e. wave parameters) BP1 set 1: Power spectrum of the magnetic field (B) BP1 set 2: Power spectrum of the electric field (E) BP1 set 3: Wave normal vector (from B) BP1 set 4: Wave ellipticity estimator (from B) BP1 set 5: Wave planarity estimator (from B) BP1 set 6: XSO(radial)-component of the Poynting vector BP1 set 7: Phase velocity estimator BP2 set 1: Autocorrelations BP2 set 2: Normalized cross correlations Mono-k assumption : (Means, JGR, 1972) (Samson & Olson, GJRA, 1980) 𝐧×𝐄 = ω 𝑘 𝐁 𝑆 𝑖𝑗 𝑆 𝑖𝑖 𝑆 𝑗𝑗

39 LFR Spectral Frequencies
Depending on the frequency channel, selection of 96, 104 or 88 consecutive frequency bins among 128 (NFFT = 256) of the time averaged spectral matrices. Then, the ASMs are averaged over packets of Nfreq (8 or 4) consecutive bins : Δ 𝑓 𝑚 = 𝑓 𝑚 𝑁 𝐹𝐹𝑇 × 𝑁 𝑓𝑟𝑒𝑞 𝑁 𝑓𝑟𝑒𝑞 = 8 f3 = 16 Hz => waveform [DC, 8Hz] f3 / 2.5 = 6.4 Hz f2 = 256 Hz => 12 frequencies [6.5Hz, 102.5Hz] Δ f (2) = 8 Hz f2 / 2.5 = Hz f1 = 4096 Hz => 13 frequencies [88Hz, 1752Hz] Δ f (1) = 128 Hz f1 / 2.5 = Hz f0 = Hz => 11 frequencies [1584Hz, 10032Hz] Δ f (0) = 768 Hz f0 / 2.5 = Hz 10-1 100 101 102 103 104 Hz 6.4Hz continuous waveform 6.5Hz 102.5Hz 96 bins 88Hz 1752Hz 104 bins 1584Hz 10032Hz 𝐒= 𝐀𝐒𝐌 𝑓𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 88 bins

40 LFR Normal Mode (1) Basic Parameters sampling frequency ...
BP: bps WF: bps ASM: bps TM: bps Basic Parameters sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 ASM BP1 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs 4 SMs 64 SMs 384 SMs f0 = Hz ... TBP1_0= 4 s ... f1 = 4096 Hz ... TBP1_1= 4 s ... f2 = 256 Hz ... TBP1_2= 4 s ... ... 4 s continuous WF ... f3 = 16 Hz 20 s time

41 WaveForms & Averaged Spectral Matrices
LFR Normal Mode (2) WaveForms & Averaged Spectral Matrices TASM= 3600 s sampling frequency TWF= 300 s WF BP1 ASM BP1 WF 384 SMs 384 SMs 384 SMs f0 = Hz 1/12 s ... ... ... 64 SMs 64 SMs 64 SMs f1 = 4096 Hz 1/2 s ... ... ... 4 SMs 4 SMs 4 SMs f2 = 256 Hz 8 s ... ... ... 2048 pts ... 4 s ... continuous WF ... f3 = 16 Hz time

42 LFR Selected Burst Mode 1
BP: bps WF: bps ASM: bps TM: bps sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs 24 SMs f0 = Hz ... TBP1_0= 0,25 s ... 0,25 s f1 = 4096 Hz ... continuous WF ... 1 s time

43 LFR Selected Burst Mode 2
BP: bps WF: bps ASM: bps TM: bps sampling frequency BP1 & BP2 BP1 & BP2 BP1 BP1 BP1 BP1 BP1 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs 96 SMs f0 = Hz ... TBP1_0= 1 s ... 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs 16 SMs f1 = 4096 Hz ... TBP1_1= 1 s ... f2 = 256 Hz ... 1 s continuous WF ... 5 s time

44 LFR block diagram

45 BIAS configuration

46 LFR B1 B2 B3 Transfer Fonctions

47 LFR BIAS Transfer Fonctions


Download ppt "LFR first PFM calibration results"

Similar presentations


Ads by Google