Download presentation
Presentation is loading. Please wait.
1
ELEC 3105 Basic EM and Power Engineering
Rotating DC Motor PART 2 Electrical
2
Motor / Generator Action
Loop Equivalent circuit Expression of Vemf Slide extracted from linear motor and modified for loop motor.
3
Motor / Generator Action
Slide extracted from linear motor and modified for loop motor. Linear relation between speed and torque Current flows in a direction to charge the battery. Stall torque Generator Motor Link
4
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ E = motor voltage Ra = armature resistance La = armature inductance V = Applied motor voltage Ia = armature current ο = magnetic flux Rf = field resistance Lf = field inductance Vf = Field voltage If = field current
5
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ In steady state operation: FIELD SIDE πΌ π = π π π
π Ξ¦= 2 ππΌ π π Magnetic circuit reluctance
6
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ In steady state operation: ARMATURE SIDE πΈ= π πΈ Ξ¦ π π Back emf Motor constant
7
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ In steady state operation: ARMATURE SIDE π πππ£ = π π Ξ¦ πΌ π Developed torque Motor constant π πΈ = π π Same motor constant in emf and developed torque
8
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ Power flow: ARMATURE SIDE; Conservation of energy KVL π= πΌ π π
π +πΈ Armature copper loss POWER π πΌ π = πΌ π 2 π
π + πΌ π πΈ Power developed Power in
9
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ Power flow: ARMATURE SIDE; Conservation of energy π πππ£ Power developed π ππ π πππ π π πππ£ = πΌ π πΈ= π π π πππ£ Electrical Mechanical copper
10
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ Power flow: ARMATURE SIDE π ππ’π‘ = π πππ£ β π πππ‘ π ππ’π‘ π πππ£ π πππ‘ π ππ π πππ π Rotational loss Copper Electrical Mechanical
11
Electrical Equivalent
πΏ π π
π π
π ο πΏ π π π , π πππ£ Motor sequence π ππ’π‘ = π πππ£ β π πππ‘ π πΌ π π πππ£ π π πΈ π πππ£ Speed of rotation limiting loop
12
Shunt Connected Field πΏ π π
π π= πΌ π π
π +πΈ π πππ£ = π π Ξ¦ πΌ π R π
π
π= πΌ π π
π +πΈ π πππ£ = π π Ξ¦ πΌ π R π
π πΈ= π πΈ Ξ¦ π π π π , π πππ£ πΏ π ο π πππ£ = πΞ¦π π
π β π 2 Ξ¦ 2 π
π π π Rotation rate Developed torque
13
Shunt Connected Field πΏ π π
π R π
π π π , π πππ£ πΏ π ο
π πππ£ = πΞ¦π π
π β π 2 Ξ¦ 2 π
π π π Similar type of graph
14
Shunt Connected Field πΏ π π
π π πππ£ = πΞ¦π π
π β π 2 Ξ¦ 2 π
π π π R π
π
π πππ£ = πΞ¦π π
π β π 2 Ξ¦ 2 π
π π π R π
π π π , π πππ£ πΏ π ο π πππ£ πΎΞ¦π π
π Force motor to spin backwards Force motor to spin to fast π πΞ¦ Generator Motor Generator π π
15
Series Connected Field
π
π πΏ π πΏ π π
π ο π π , π πππ£ Universal motor design: works for D.C. and for A.C. π= πΌ π (π
π + π
π )+πΈ π πππ£ = π π Ξ¦ πΌ π π πππ£ = π β² πΌ π 2 Since Ξ¦β πΌ π πΈ= π πΈ Ξ¦ π π
16
Series Connected Field
π
π πΏ π πΏ π π
π ο π π , π πππ£ Universal motor design: works for D.C. and for A.C. π πππ£ 1 π π 2 π πππ£ = π β² π π
π + π
π + π β² π π 2 π π
17
Maximum Power Transfer
πΏ π π= πΌ π π
π +πΈ π
π π
π ο πΏ π π π , π πππ£ Power developed in the motor π πππ£ =πΈ πΌ π π πππ£ =πΈ πβπΈ /π
π Find maximum with respect to the motor voltage π πππ£ = πΈπβ πΈ 2 π
π
18
Maximum Power Transfer
πΏ π π= πΌ π π
π +πΈ π
π π
π ο πΏ π π π , π πππ£ For extremes of a function, take derivatives and set to zero π πππ£ =πππ₯πππ’π π€βππ πΈ= π 2 π πππ£ {πππ₯ = π£ 2 4π
π
19
Calculation example Solution provided in class π= πΌ π π
π +πΈ πΏ π π
π
π= πΌ π π
π +πΈ πΏ π π
π π
π π πππ£ = π π Ξ¦ πΌ π ο πΏ π π π , π πππ£ πΈ= π πΈ Ξ¦ π π A 120 volt dc motor has an armature resistance of 0.70 β¦. At no-load, it requires 1.1 A armature current and runs at 1000 rpm. Find the output power and torque at 952 rpm output speed. Assume constant flux. Solution provided in class
20
Calculation example Solution provided in class π= πΌ π π
π +πΈ πΏ π π
π
π= πΌ π π
π +πΈ πΏ π π
π π
π π πππ£ = π π Ξ¦ πΌ π ο πΏ π π π , π πππ£ πΈ= π πΈ Ξ¦ π π A permanent magnet dc motor has the following information: 50 hp, 200 V, 200 A, 1200 rpm and armature resistance of 0.05 β¦. Determine the output power if the voltage is lowered to 150 V and the current is 200 A. Assume rotational losses are proportional to speed. Determine the rotational loss, armature resistance, no-load rpm, machine constant, efficiency? Solution provided in class
21
Calculation example Solution provided in class π= πΌ π π
π +πΈ πΏ π π
π
π= πΌ π π
π +πΈ πΏ π π
π π
π π πππ£ = π π Ξ¦ πΌ π ο πΏ π π π , π πππ£ πΈ= π πΈ Ξ¦ π π An 80 V dc motor has constant field flux, separately excited, and a nameplate speed of 1150 rpm with 710 W output power. The nameplate armature current is 10 A and the no-load current is 0.5 A. Assume constant rotational losses. Solution provided in class
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.