Download presentation
Presentation is loading. Please wait.
1
Topology comparison RSE vs. SAGNAC using GWINC
S. Chelkowski, H. Müller-Ebhardt, S. Hild 21/09/2009 S. Chelkowski ET Workshop, Erice, 10/2009
2
Overview Intro & Motivation Noise coupling differences & similarities
Displacement noise in a 2- & 4-mirror cavity Beam geometry influence on thermal noise GWINC model Results Conclusion S. Chelkowski ET Workshop, Erice, 10/2009
3
ET note on QND review Conclusion Sagnac Topology seems to give the best quantum noise performance S. Chelkowski ET Workshop, Erice, 10/2009
4
More realistic comparison of Sagnac and RSE topology
S. Chelkowski ET Workshop, Erice, 10/2009
5
Noise coupling – Sagnac compared to RSE
Quantum noise characteristic change How do various displacement noises couple more due to four mirror cavities, e.g. TN, Seismic noise, etc... Beam geometry changes and influences TN further Higher losses in four mirror arm cavity Etc... S. Chelkowski ET Workshop, Erice, 10/2009
6
Coupling of displacement noises
Cavity Design Signal Noise For two mirrors of the 4 mirror cavity: Signal: Noise: S. Chelkowski ET Workshop, Erice, 10/2009
7
Beam geometry changes affect the TN
Beam geometry on mirror surface depends on incidence angle Initial beam shape defined by: changes into: Note Take clipping loss into account in the following analysis S. Chelkowski ET Workshop, Erice, 10/2009
8
Beam geometry in the 4 mirror cavity
Mirror sizes used: r=31cm Round beam with w=12cm has clipping loss of 1ppm Beam size on one of the four arm cavity mirrors Resulting Beam wx = 12cm & wy = 10cm S. Chelkowski ET Workshop, Erice, 10/2009
9
Consequences for the thermal noise
Coating Brownian thermal noise: CBTN adaptation to elliptical beam: with PSD: , with & we find Bessel function of 0. order Beam intensity distribution: Analytically not solvable! Numerical integration S. Chelkowski ET Workshop, Erice, 10/2009
10
The same was done for the Substrate Brownian thermal noise!
Result for CBTN CBTN for elliptical beam shape using the minor beam width with CBTN correction factor The same was done for the Substrate Brownian thermal noise! S. Chelkowski ET Workshop, Erice, 10/2009
11
CBTN for elliptical beam shape using the minor beam width
Result for SBTN CBTN for elliptical beam shape using the minor beam width with SBTN correction factor S. Chelkowski ET Workshop, Erice, 10/2009
12
Result for our specific case
Topology wx [cm] wy CBTN cor. factor SBTN ET RSE 12 1 ET Sagnac 10 1.189 1.089 S. Chelkowski ET Workshop, Erice, 10/2009
13
Current model status Single detector Underground
L = 10km Underground Seismic noise reduced Gravity gradient noise reduced Adapted thermal noises & suspension model Optimisation parameters Input laser power P SR, ITM & PRM transmissivity Tuning of SRM Readout quadrature with homodyne detector S. Chelkowski ET Workshop, Erice, 10/2009
14
Things to keep in mind This is a topology analysis and there is no intension to create a new baseline sensitivity curve Following sensitivities are lower than the ones presented on the ET webpage No magical factor used e.g. for the grav. gradient noise No squeezing used No cryogenic techniques Nevertheless the following comparison is valid The model can be changed later and a higher performing configuration can be found via optimisation S. Chelkowski ET Workshop, Erice, 10/2009
15
Figure of merit and optimisation
BHBH and NSNS inspiral ranges Give parameters of standard candles. BHBH: Mass each 30Msol, Distance 10Mpc, merger at ~5Hz NSNS: Mass each 1.4Msol, Distance 23Mpc, merger at ~2.3kHz 5D parameter space is scanned automatically for the optimal configuration with an adaptive resolution S. Chelkowski ET Workshop, Erice, 10/2009
16
RSE topology results – tuned configuration
BHBH: 9736Mpc NSNS: 871Mpc S. Chelkowski ET Workshop, Erice, 10/2009
17
RSE topology results – 5D - auto optimisation
BHBH optimisation BHBH: 11776Mpc NSNS optimisation NSNS: 949Mpc S. Chelkowski ET Workshop, Erice, 10/2009
18
SAGNAC topology results – 5D - auto optimisation
BHBH: 14836Mpc NSNS: 1282Mpc S. Chelkowski ET Workshop, Erice, 10/2009
19
Comparison of results – BHBH optimisation - I
RSE – tuned SR SAGNAC-optimised BHBH inspiral range for Sagnac topology 52% larger Event rate increased by a factor of 3.5 S. Chelkowski ET Workshop, Erice, 10/2009
20
Comparison of results – BHBH optimisation - II
RSE – optimised SAGNAC-optimised BHBH inspiral range for Sagnac topology 26% larger Event rate increased by a factor of 2.0 S. Chelkowski ET Workshop, Erice, 10/2009
21
Comparison of results – NSNS optimisation - I
RSE – tuned SR SAGNAC-optimised BHBH inspiral range for Sagnac topology 47% larger Event rate increased by a factor of 3.2 S. Chelkowski ET Workshop, Erice, 10/2009
22
Comparison of results – NSNS optimisation - II
RSE – optimised SAGNAC-optimised BHBH inspiral range for Sagnac topology 35% larger Event rate increased by a factor of 2.5 S. Chelkowski ET Workshop, Erice, 10/2009
23
Conclusion Sagnac topology performs better than RSE in this analysis
BHBH inspiral range increase by 26%-52% NSNS inspiral range increase by 35%-47% Next steps: Use Markov Chain Monte Carlo method for the optimisation, first tests already done How does it perform? Useful for comparison of other topologies in the future Write ET note about this topology analysis S. Chelkowski ET Workshop, Erice, 10/2009
24
THE END... S. Chelkowski ET Workshop, Erice, 10/2009
25
Additional slides S. Chelkowski ET Workshop, Erice, 10/2009
26
PRM transmissivity algorithm check - I
Tuning Tprm for a fixed config S. Chelkowski ET Workshop, Erice, 10/2009
27
PRM transmissivity algorithm check - I
Auto optimisation Manual optimisation S. Chelkowski ET Workshop, Erice, 10/2009
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.