Download presentation
Presentation is loading. Please wait.
Published byDrusilla Richardson Modified over 6 years ago
1
Shigehiro Yasui Tokyo Institute of Technology
Charm nuclei and related topics Shigehiro Yasui Tokyo Institute of Technology ExHIC Mar. 2016
2
Nucleus + Strangeness 1. Hadron-nucleon interaction
1. Multi-flavor nucleus Nucleus + Strangeness 1. Hadron-nucleon interaction 2. Hadron in medium 3. Nuclear structure Impurity physics
3
??? Nucleus + Charm 1. Hadron-nucleon interaction 2. Hadron in medium
1. Multi-flavor nucleus Nucleus + Charm Mass hierarchy (mc>>ΛQCD) ~1.2 GeV ~0.2 GeV 1. Hadron-nucleon interaction ??? 2. Hadron in medium 3. Nuclear structure Impurity physics
4
Charm nucleus mass spectroscopy
1. Multi-flavor nucleus Charm nucleus mass spectroscopy D, D* - Binding energy - Dispersion relation - Spectral function - Reaction - Restoration of χSB - Nuclear structure - etc. q c Nucleus
5
Charm/bottom “light” nuclei
1. Multi-flavor nucleus Charm/bottom “light” nuclei M. Bayer, C. W. Xiao, T. Hyodo, A. Dote, M. Oka, E. Oset, Phys. Rev. C86, (2012) DNN D(*)NN BNN Y. Yamaguchi, S.Y., A. Hosaka, Nucl. Phys. A927, 110 (2014) A. Yokota, E. Hiyama, M. Oka, Pog. Ther. Exp. Phys. 2013, 113D01 J/ψNN ηc N N Λc N N S. Maeda, M. Oka, A. Yokota, E. Hiyama, Y-R. Liu, Pog. Ther. Exp. Phys. 2016, 023D02
6
Repulsive? or Attractive?
1. Multi-flavor nucleus D (B) meson in nuclear matter Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction), ... Binding energy [MeV] Hadron dynamics Quark-meson coupling model QCD rum rule Mean field WT-type coupling π exchange ~ a few ten MeV Repulsive? or Attractive? [26] -50 MeV [27] +30 MeV [28] -66 MeV [29] [6] K. Tsushima, D. -H. Lu, A. W. Thomas, K. Saito and R. H. Landau, Phys. Rev. C 59, 2824 (1999). [7] A. Sibirtsev, K. Tsushima and A. W. Thomas, Eur. Phys. J. A 6, 351 (1999). [15] T. Hilger, R. Thomas and B. Kampfer, Phys. Rev. C 79, (2009). [16] T. Hilger, R. Schulze and B. Kampfer, J. Phys. G G 37, (2010). [17] Z. -G. Wang and T. Huang, Phys. Rev. C 84, (2011). [18] A. Mishra, E. L. Bratkovskaya, J. Schaffner-Bielich, S. Schramm and H. Stoecker, Phys. Rev. C 69, (2004). [19] M. F. M. Lutz and C. L. Korpa, Phys. Lett. B 633, 43 (2006). [20] L. Tolos, A. Ramos and T. Mizutani, Phys. Rev. C 77, (2008). [21] A. Mishra and A. Mazumdar, Phys. Rev. C 79, (2009). [22] A. Kumar and A. Mishra, Phys. Rev. C 81, (2010). [23] C. E. Jimenez-Tejero, A. Ramos, L. Tolos and I. Vidana, Phys. Rev. C 84, (2011). [24] A. Kumar and A. Mishra, Eur. Phys. J. A 47, 164 (2011). [25] C. Garcia-Recio, J. Nieves, L. L. Salcedo and L. Tolos, Phys. Rev. C 85, (2012). [26] S. Yasui, K. Sudoh, Phys. Rev. C87, (2013). [27] A. Hayashigaki, Phys. Lett. B487, 96 (2000) [28] K. Suzuki, P. Gubler, M. Oka, Pos Hadron2013, 179 (2014). [29] K. Azzi, N. Er, H. Sundu, Eur. Phys. J. C74, 3021 (2014).
7
D (B) meson in nuclear matter
1. Multi-flavor nucleus D (B) meson in nuclear matter Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction), ... Heavy quark symmetry DN ⇄ D*N Hadronic model C. Garcia-Recio, J. Nieves, L. L. Salcedo, L. Tolos, Phys. Rev. C 85, (2012)
8
π meson exchange between D (D*) and N
1. Multi-flavor nucleus D (B) meson in nuclear matter Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction), ... Heavy quark symmetry DN ⇄ D*N Hadronic model S. Y. , K. Sudoh, Phys Rev. C87, (2013) π meson exchange between D (D*) and N D, B D*, B* ρ0 ρ0
9
D (B) meson in nuclear matter
1. Multi-flavor nucleus D (B) meson in nuclear matter Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction), ... QCD sum rule K. Suzuki, P. Gubler, M. Oka, arXiv: [hep-ph] Cf. Quark confinement picture A. Park. P. Gubler, M. Harada, S. H. Lee, C. Nonaka, W. Park, arXiv: [nucl-th]
10
D (B) meson in nuclear matter
1. Multi-flavor nucleus D (B) meson in nuclear matter Quark-meson coupling model, QCD sum rules, hadronic interactions (mean-field approach, channel coupling, pion interaction), ... PNJL model D. Blaschkem P. Costa, Y-L. Kalinovsky, Phys. Rev. D85, (2012)
11
Charm nucleus mass spectroscopy
1. Multi-flavor nucleus Charm nucleus mass spectroscopy D, D* - Binding energy - Dispersion relation - Spectral function - Reaction - Restoration of χSB - Nuclear structure - etc. q c Nucleus Kondo effect “heavy impurity” physics (This should be applicable in general cases...)
12
Mean-field approach to Kondo effect
Contents 1. Multi-flavor nucleus 2. Kondo effect 2.1 What’s Kondo effect? 2.2 Kondo effect in atomic nuclei (mean-field + RPA) 3. Conclusion Mean-field approach to Kondo effect bulk systems finite systems F. Takano, T. Ogawa, Prog. Theor. Phys. 35, 343 (1966) A. Yoshimori, A. Sakurai, Suppl. Prog. Theor. Phys. 46, 162 (1970) M. Eto, Y. V. Narazov, Phys. Rev. B 64, (2001) This work
13
2. Kondo effect Jun Kondo (1930-)
14
2.1 What’s Kondo effect? Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) Impurity atom with spin ½ with Ta・Ta interaction electron T2 (classical) metal Log T/TK (quantum) T1, ..., Tn^2-1: generators of SU(n) (n=2 for spin ½) TK: Kondo temperature “Kondo bound state” impurity spin electron spin
15
(particle-hole creation)
2.1 What’s Kondo effect? impurity fermion Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) Heavy impurity 1 Fermi surface (degenerate state) 2 Loop effect (particle-hole creation) 3 Non-Abelian int. (SU(n) symmetry)
16
2.1 What’s Kondo effect? Original Work: J. Kondo (Prog. Theor. Phys. 32, 37 (1964)) Scattering amplitude at tree and one-loop levels electron l k + k, l, i, j=↑, ↓ in SU(n) (n=2 for spin ½) T1, ..., Tn^2-1: generators of SU(n) impurity atom j i (Ta)kl(Ta)ij interaction electron E: energy from Fermi surface l k l k j i j i hole Log E divergence for infrared limit (E→0) for any small coupling → Logarithmic divergence in resistance of electron
17
“Isospin Kondo effect” “Color (QCD) Kondo effect”
2.1 What’s Kondo effect? Application to nuclear/quark matter NJL-type: S.Y., K.Sudoh, Phys. Rev. C88, (2013) QCD: K. Hattori, K. Itakura, S. Ozaki, S. Y., Phys. Rev. D92, (2015) the ground state? What’s nucleon u,d,s quark D, B meson c, b quark (τa)kl(τa)ij interaction (λa)kl(λa)ij interaction “Isospin Kondo effect” “Color (QCD) Kondo effect” ① nuclear matter ② nucleon-hole loop ③ isospin SU(2) symmetry ① quark matter ② quark-hole loop ③ color SU(3) symmetry Cf. “Magnetic catalysis QCD Kondo effect” S. Ozaki, K. Itakura, Y. Kuramoto, arXiv:1509:06966 [hep-ph]
18
the ground state? What’s
2.1 What’s Kondo effect? Application to nuclear/quark matter NJL-type: S.Y., K.Sudoh, Phys. Rev. C88, (2013) QCD: K. Hattori, K. Itakura, S. Ozaki, S. Y., Phys. Rev. D92, (2015) the ground state? What’s nucleon u,d,s quark D, B meson c, b quark (τa)kl(τa)ij interaction (λa)kl(λa)ij interaction “Isospin Kondo effect” “Color (QCD) Kondo effect” ① nuclear matter ② nucleon-hole loop ③ isospin SU(2) symmetry ① quark matter ② quark-hole loop ③ color SU(3) symmetry What’s about in finite size nuclei? S. Yasui, arXiv: [hep-ph Cf. “Magnetic catalysis QCD Kondo effect” S. Ozaki, K. Itakura, Y. Kuramoto, arXiv:1509:06966 [hep-ph]
19
? 2.2 Kondo effect in atomic nuclei Simple model for atomic nucleus
-shell model-like picture- ・ ? 2S 1D isospin-exchange 1P 1S D sector D meson nucleon sector ↑/↓ for proton/neutron Schematic figure of the nucleon energy-levels in harmonic oscillator potential/Woods-Saxon potential Ansatz: 1. Single-particle motion of nucleon 2. Isospin-exchange in residual interaction
20
Purpose: the ground state energy?
2.2 Kondo effect in atomic nuclei Simple model for atomic nucleus -shell model-like picture- k = 1 2 3 N nucleon sector ↑/↓ for proton/neutron D sector εk HK cf. This method can be extended to multi-shells, à la Lipkin model. Kinetic term ckσ: annihilation operator for nucleon in level k and isospin σ=↑/↓ T+, T-, T3: isospin operator for D meson Cf. π-exchange interaction: S.Y. and K.Sudoh, Phys. Rev. D80, (2009) Kondo (isospin-exchange) interaction D meson Purpose: the ground state energy?
21
2.2 Kondo effect in atomic nuclei
Exact solution Simple case: εk=ε ε k = 1 2 3 N Ex. nucleon # = 1 with singlet w.f. linear algebraic equation solution !! ε ε-3Ng/2 : “Kondo bound state” (superposed state of nucleons and D meson) k’ = 1 2 3 N
22
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach k = 1 2 3 N nucleon sector ↑/↓ for proton/neutron D sector εk HK cf. This method can be extended to multi-shells à la Lipkin model. Kinetic term ckσ: annihilation operator for nucleon in level k and isospin σ=↑/↓ T+, T-, T3: isospin operator for D meson Cf. π-exchange interaction: S.Y. and K.Sudoh, Phys. Rev. D80, (2009) Kondo (isospin-exchange) interaction
23
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Step 1. Introduce auxiliary fermion fields fσ (SU(2)) auxiliary fermion # constraint fermion # 0, 2 fermion # 1 physical space How does it work? Step 2. Introduce Lagrange multiplier λ Step 3. Apply mean-field (Δ) approx. “gap” isosinglet Step 4. Variation by λ and Δ
24
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Step 1. Introduce auxiliary fermion fields fσ (SU(2)) auxiliary fermion # constraint fermion # 0, 2 fermion # 1 physical space Step 2. Introduce Lagrange multiplier λ Step 3. Apply mean-field (Δ) approx. “gap” isosinglet Step 4. Variation by λ and Δ
25
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: εk=ε ε k = 1 2 3 N Step 3 Matrix Basis N↑ N↑ D↑ N↓ N↓ D↓ Attraction by N-D mixing (Δ) ↓ New ground state N↑ D↑ N↓ D↓ N↑ D↑ N↓ D↓ Diagonalization (next page)
26
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: εk=ε ε k = 1 2 3 N Step 3 Diagonalized matrix lowest energy (↑) lowest energy (↓) New basis Linear combination of (coherent) nucleon and D meson
27
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: εk=ε ε k = 1 2 3 N Step 3 Diagonalized matrix lowest energy (↑) lowest energy (↓) Step 4 Variation by “Kondo bound state” Binding energy (MF): Ng different form exact solution 3Ng/2?
28
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: εk=ε ε k = 1 2 3 N ① Mean-value of auxiliary fermion number Impurity particle number is one in average.
29
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: εk=ε ε k = 1 2 3 N ② Fluctuation effect (random-phase approx.: RPA) zero-point energy in H.O. potential Binding energy (MF+RPA): 1.378Ng close to exact solution 3Ng/2=1.5Ng!!
30
Mean-field (+RPA) approach
2.2 Kondo effect in atomic nuclei What’s about more general cases? Mean-field (+RPA) approach Simple case: εk=ε ε+δε ③ Violation of isospin symmetry (application) ε k = 1 2 3 N ε↑=ε, ε↓=ε+δε Δ Δ=0 at δε=4Ng δε 4Ng critical EMF-ε EMF=ε at δε=4Ng δε 4Ng critical -Ng
31
Nuclear system with D meson x Isospin-dependent interaction
3. Conclusion 1. We study the ground state of charm nucleus (D meson) with isospin Kondo effect. Nuclear system with D meson x Isospin-dependent interaction = “Kondo bound state” 2. We apply the mean-field + RPA approach to the ground state in a simple model in success. 3. This method can be applied to realistic nuclear structure with charm/bottom hadron. Future works: 1. Application to realistic D meson-nucleon interaction. 2. Effect by nuclear shell effects/collective modes. 3. Observables for experiments. 4. etc.
32
References HQS doublet/singlet in exotic hadrons and nuclei
S.Y., K.Sudoh, Y.Yamaguchi, S.Ohkoda, A.Hosaka, T.Hyodo, Phys. Lett. B727, 185 (2013) Y.Yamaguchi, S.Ohkoda, T.Hyodo, A.Hosaka, S.Y., Phys. Rev. D91, (2015) D(*)N, D(*)NN hadronic molecules S.Y., K.Sudoh, Phys. Rev. D80, (2009) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D84, (2011) Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D85, (2013) Y.Yamaguchi, S.Y., A.Hosaka, Nucl. Phys. A927, 110 (2014) D(*) in nuclear matter and Kondo effects S.Y., K.Sudoh, Phys. Rev. C87, (2013) S.Y., K.Sudoh, Phys. Rev. C88, (2013) NLO in 1/mQ expansion for D(*) in nuclear matter S.Y., K.Sudoh, Phys. Rev. C89, (2014) D(*)N hadronic molecules Y.Yamaguchi, S.Ohkoda, S.Y., A.Hosaka, Phys. Rev. D87, (2013)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.