Download presentation
Presentation is loading. Please wait.
1
Homographic Functions
avril 09 纪光 - 北京 景山学校 - Homographic Functions
2
纪光 - 北京 景山学校 - Homographic Functions
Basic type (Review 1) A > 0 when x +∞ then y 0 (+) when x -∞ then y 0 (-) x-axis y = 0 is an asymptote for (H) when x 0 (+) then y +∞ when x 0 (-) then y -∞ y-axis x = 0 is an asymptote for (H) The vertex of the Hyperbola is the point (√A,√A) on the Axis (y=x). The function is an odd function O is the center of symetry of (H). avril 09 纪光 - 北京 景山学校 - Homographic Functions
3
纪光 - 北京 景山学校 - Homographic Functions
Basic type (Review 2) A < 0 when x +∞ then y 0 (-) when x -∞ then y 0 (+) x-axis y = 0 is an asymptote for (H) when x 0 (+) then y - ∞ when x 0 (-) then y + ∞ y-axis x = 0 is an asymptote for (H) The vertex of the Hyperbola is the point (-√(-A),√(-A) on the Axis (y=-x). The function is an odd function O is the center of symetry of (H). avril 09 纪光 - 北京 景山学校 - Homographic Functions
4
First transformation (1)
avril 09 纪光 - 北京 景山学校 - Homographic Functions
5
First transformation (1)
h = +2 avril 09 纪光 - 北京 景山学校 - Homographic Functions
6
First transformation (2)
avril 09 纪光 - 北京 景山学校 - Homographic Functions
7
First transformation (2)
h = +2 avril 09 纪光 - 北京 景山学校 - Homographic Functions
8
纪光 - 北京 景山学校 - Homographic Functions
2nd transformation (1) A > 0 A > 0 avril 09 纪光 - 北京 景山学校 - Homographic Functions
9
纪光 - 北京 景山学校 - Homographic Functions
2nd transformation (1) A > 0 avril 09 纪光 - 北京 景山学校 - Homographic Functions
10
纪光 - 北京 景山学校 - Homographic Functions
2nd transformation (2) A < 0 A < 0 avril 09 纪光 - 北京 景山学校 - Homographic Functions
11
纪光 - 北京 景山学校 - Homographic Functions
2nd transformation (2) A < 0 avril 09 纪光 - 北京 景山学校 - Homographic Functions
12
纪光 - 北京 景山学校 - Homographic Functions
3rd transformation A > 0 avril 09 纪光 - 北京 景山学校 - Homographic Functions Homographic Functions
13
Change of center and variables
Let X = x – l and Y = y – h then the equation becomes which means that, with respect to the new center 0’(l,h), the graph of the function is the same as the original. avril 09 纪光 - 北京 景山学校 - Homographic Functions
14
纪光 - 北京 景山学校 - Homographic Functions
Limits & Asymptotes when x +∞ or x - ∞ then y h (±) the line y = h is an asymptote for (H) when x l (±) then y ±∞ the line x = l is an asymptote for (H) The point (l,h) intersection of the two asymptotes is the center of symmetry of the hyperbola. avril 09 纪光 - 北京 景山学校 - Homographic Functions
15
纪光 - 北京 景山学校 - Homographic Functions
General case It’s easy to check that all functions in the type of can be changed into the form of f5(x). Example : Problem : prove that all functions defined by : can be transformed into the previous one. Example : avril 09 纪光 - 北京 景山学校 - Homographic Functions
16
纪光 - 北京 景山学校 - Homographic Functions
General case In this example l = 1, h = 4, A = 9 «Horizontal» Asymptote : y = 4 «Vertical» Asymptote : x = 1 Center : (1;4). A > 0 function is decreasing. Only one point is necessary to be able to place the whole graph ! Interception with the Y-Axis : (0,-5) or Interception with the X-Axis : avril 09 纪光 - 北京 景山学校 - Homographic Functions
17
纪光 - 北京 景山学校 - Homographic Functions
General case Formulas : l = and h = In fact one can find the asymptotes by looking for the limits of the function in the original form. Then it’s not necessary to change the form to be able to plot the graph. avril 09 纪光 - 北京 景山学校 - Homographic Functions
18
纪光 - 北京 景山学校 - Homographic Functions
祝好运 谢谢 再见 avril 09 纪光 - 北京 景山学校 - Homographic Functions
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.