Download presentation
Presentation is loading. Please wait.
1
Department of Chemistry
The microwave spectra and molecular structures of 2-(trifluoromethyl)-oxirane and 2-vinyloxirane, two candidates for chiral analysis via noncovalent chiral tagging Mark D. Marshall, Helen O. Leung, Desmond Acha, Kevin Wang, Olivia Febles, Alexandra Gomez Department of Chemistry Amherst College Supported by the National Science Foundation
2
Noncovalent chiral tagging
3
Requirements for chiral tag
Easily available in enantiopure form Small, chiral molecule Easy to introduce into free-jet expansion Functionalized for noncovalent interactions Simple rotational spectrum Minimal isotopic dilution (13C, 18O helpful) No hyperfine No internal rotation Spectroscopically characterized Structure determined 2-(trifluoromethyl)-oxirane (TFO) 2-vinyloxirane (VO)
4
Experimental methods Chirped pulse Fourier transform microwave spectrometer 6.1 – 18.1 GHz (TFO) GHz (VO) 1% TFO in argon or liquid VO entrained in argon is expanded through two pulsed valves with 0.8 mm nozzle Spectra obtained as 4 GHz portions, 20 W power, 4 s chirp Ten 10-s FIDs per gas pulse 618,000 – 900,000 FIDs averaged 200 kHz FWHM Spectra analyzed using Kisiel’s AABS package in conjunction with Pickett’s SPFIT/SPCAT Photo courtesy of Jessica Mueller, Amherst College
5
TFO spectrum - overview
μa = 1.49 D μb = 1.82 D μc = 1.17 D a-type transitions (red) c-type transitions (purple & blue) b-type transitions (green & teal)
6
TFO spectrum – 500 MHz portion
7
TFO – spectroscopic constants
CH2CH(CF3)O 13CH2CH(CF3)O CH213CH(CF3)O CH2CH(13CF3)O CH2CH(CF3)18O A / MHz (43) (79) (99) (86) (13) B / MHz (21) (50) (71) (52) (89) C / MHz (21) (50) (70) (56) (82) J / 10-3 MHz 0.2531(22) 0.235(10) 0.263(14) 0.2370(92) 0.283(30) JK / 10-3 MHz 1.5833(19) 1.549(19) 1.493(20) 1.554(16) 1.586(49) K / 10-3 MHz −0.9442(88) −0.926(42) −0.908(45) −0.916(43) −1.50(18) J / 10-3 MHz (11) 0.0221(26) 0.0239(20) 0.0249(16) 0.0225(16) K / 10-3 MHz −0.8504(57) −0.79(10) −0.57(12) −0.559(86) [−0.8504] J range 0 – 16 0 – 10 Ka range 0 – 8 0 – 4 0 – 3 rms / kHz 8.43 8.44 10.93 9.89 6.38
8
TFO - structure 1.4309(4) Å 1.46(1) Å 59.7(8)o 1.44(1) Å 1.498(4) Å
Kisiel’s STRFIT used to fit A, B, C of 5 isotopologues to 6 structural parameters 2 bond lengths and one angle in ring –CF3 carbon located relative to O and plane of ring All other parameters fixed at ab initio values rms = u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters
9
VO spectrum - overview μa = 0.81 D μb = 1.78 D μc = 0.41 D
10
VO spectrum – 1200 MHz portion
11
VO – spectroscopic constants
C4H6O 13CH2CHOC2H3 CH213CHOC2H3 CH2CHO13CHCH2 CH2CHOCH13CH2 C2H318OC2H3 A / MHz (62) (24) (68) (18) (24) (54) B / MHz (16) (49) (16) (41) (53) (90) C / MHz (23) (65) (18) (48) (52) (72) J / 10-3 MHz 0.4697(72) [0.470] JK / 10-3 MHz 10.098(81) [10.10] K / 10-3 MHz 10.08(34) [10.08] J / 10-3 MHz 0.0096(13) [0.0096] K / 10-3 MHz -11.14(78) [ ] RMS / kHz 5.155 6.145 4.691 4.068 5.692 7.127 Highest J 13 7 6 4 10 9 Highest Ka 3 2 1
12
VO - structure 1.436(3) Å 1.439(7) Å 1.474(6) Å 61.7(4)o 122.9(3)o
1.477(4) Å 1.338(2) Å Kisiel’s STRFIT used to fit A, B, C of 6 isotopologues to 9 structural parameters 2 bond lengths and one angle in ring C=C bond length, C–C=C angle, and C–C=C–C dihedral [–150.3(8)°] –C=CH2 carbon located relative to O and plane of ring All other parameters fixed at ab initio values rms = u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters
13
Ar-TFO – spectroscopic constants
Ar−CH2CH(CF3)O Ar−13CH2CH(CF3)O Ar−CH213CH(CF3)O Ar−CH2CH(13CF3)O A / MHz (36) (21) (27) (25) B / MHz (11) (11) (13) (13) C / MHz (11) (11) (13) (13) J / 10-3 MHz (30) (24) (29) (28) JK / 10-3 MHz −2.0995(20) −2.1322(24) −2.1026(33) −2.1150(31) K / 10-3 MHz 31.812(15) 31.773(22) 31.885(30) 31.867(29) J / 10-3 MHz (12) (10) (15) (13) K / 10-3 MHz 0.896(28) 0.864(52) 0.860(58) 0.860(59) J range 1 – 16 1 – 12 Ka range 0 – 6 0 – 3 rms/kHz 8.23 1.14 1.41 1.39
14
Ar-TFO - Structure 3.788(1) Å 3.7491(7) Å 3.454(2) Å Observed structure is the anti conformer in contrast to the syn conformer seen in methyloxirane! Blanco, Maris, Millemaggi, Caminati, J.Mol. Struct., 612, 309 (2002). Kisiel’s STRFIT used to fit A, B, C of 4 isotopologues to 3 structural parameters locating the Ar atom TFO fixed at monomer values rms = u Å2 and well-behaved correlations EVAL used to calculate chemically relevant parameters
15
Summary The microwave spectra and molecular structures for two potential chiral tags are determined. Both 2-(trifluoromethyl)-oxirane and 2-vinyloxirane have uncomplicated, easily assigned spectra. Both are easily available in racemic and enantiopure forms. 2-(trifluoromethyl)-oxirane is easier to incorporate into free-jet expansion. Alternate functionalizations may prove useful in forming non-covalant interactions with different partners. Argon–2-(trifluoromethyl)-oxirane is observed as the anti conformer in contrast to the syn conformer found for propylene oxide (2-methyloxirane).
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.