Presentation is loading. Please wait.

Presentation is loading. Please wait.

Internet Search and Hotel Revenues

Similar presentations


Presentation on theme: "Internet Search and Hotel Revenues"— Presentation transcript:

1 Internet Search and Hotel Revenues
Prashant Das, Ph.D. Assistant Professor of Real Estate Finance Ecole hôtelière de Lausanne, HES-SO // University of Applied Sciences Western Switzerland Route de Cojonnex 18, 1000 Lausanne, Switzerland Sincere thanks to Steve Hood and Duane Vinson of STR Global for their generous data support.

2 Research Questions Motivation
Are Hotel Searches on Google Fundamentally Associated with Hotel Demand? Do they offer additional information about demand? Can Hotel Searches on Google help with Forecasting Hotel Demand? Motivation Issues with information on market fundamentals: Infrequent release Lagged release

3 Product Demand versus Information Demand
Stocks Da et al (2011): abnormal returns Bank & Larch (2011), Drake et al (2012): liquidity Vlastakis & Markellos (2012): volatility Das et al. (2015a, b): stock returns Real Estate Wu and Brynjolfsson (2009): house price index Hohenstatt et al. (2011): endonegeneity with home prices Beracha & Wintoki (2013): causality in abnormal return in home prices Das et al. (2015a): occupancy, asset return, REIT returns

4 Google Trends Data Raw data versus search index
Cross sectional standardization Time-series standardization Sensitivity to time frame Relevance of Search Search intent Search Geography Vs

5 Data Sources: Smith Travel Research (STR) Global Google Trends
Summary of the Monthly Data Unit Mean Min Max SD KPSS PP ADF GOOG % -23.92 -52.75 13.00 16.15 0.037 <0.010 DEM Room nights (mi) 85.37 64.09 105.9 10.89 >0.100 R$ADR $ 110.8 101.3 121.9 4.943 0.010 0.478 0.787 OCC 60.31 43.58 72.11 7.140 0.066 R$GDP $(Tr) 16.17 15.58 16.91 0.317 0.608 0.900 Summary of the Weekly Data Mean Min Max SD KPSS PP ADF GOOG % -21.34 -57.00 20.00 17.64 0.02 <0.01 OCC 60.43 33.68 75.37 8.101 0.03 DEM Room nights 19.572 11.116 25.501 2.702 0.07 Sources: Smith Travel Research (STR) Global Google Trends Macroeconomic Advisors

6 Methodology Structural Model for Hotel Demand
Demand (Wheaton & Rossoff, 1998) Target Demand Moderation Eefect Endogeneity

7 Demand (Room Night Stays)
Results Demand (Room Night Stays) (1) (2) (3) (4) Ln(DEMt-1) 0.387*** 0.322*** 0.406*** 0.332*** (0.086) (0.093) (0.085) (0.092) Ln(DEMt-2) 0.586*** 0.635*** 0.556*** 0.614*** (0.088) (0.091) (0.090) Ln(R$GDP) -3.933* -3.657* -4.103* -3.765* (2.139) (2.118) (2.102) (2.071) R$ADR -0.369** -0.345* -0.383** -0.354* (0.184) (0.183) (0.181) (0.179) GOOG 0.0001* (0.0001) GOOGt-1 GOOGt-2 0.0001** Ln(R$GDP)xR$ADR 0.038** 0.035* 0.039** 0.036* (0.019) (0.018) Constant 38.747* 36.336* 40.568** 37.561* (20.388) (20.180) (20.033) (19.754) Trend Included Monthly Dummies Observations 102 R2 0.991 0.992 Adjusted R2 0.990 F Statistic *** *** *** *** Unit root problem with GDP Note: *p<0.1; **p<0.05; ***p<0.01

8 Methodology Structural Modeling
Demand Supply Change in hotel room supply, Wheaton & Rossoff (1998) : Gap between demand and supply should reflect the vacancy rate

9 Methodology Forecasting
Yang, Pan and Song (2014) and Weatherford & Keims (2003) Hotel revenue forecasting models are dominantly univariate ARIMA forecasting models for OCC and Ln(DEM), weekly basis Despite popularity of univariate forecasting models, fundamentals endogenously evolve here in a multivariate setting. E.g. OCC and DEM may simultaneously impact each other as well as be impacted by exogenous factors. Besides, GOOG will primarily influence these variables in a lagged form ARIMAX model Up to four lags of GOOG and a linear trend term as exogenous variables

10 Forecasting Weekly Room Nights Demand Using ARIMAX Models
Results Forecasting Weekly Room Nights Demand Using ARIMAX Models (1) (2) (3) ARt-1 0.8534*** 0.7801*** 0.0483*** (0.032) (0.0492) (0.0483) MAt-1 *** *** * (0.0549) (0.0648) (0.0762) MAt-2 * ** (0.0497) (0.0502) (0.0528) MAt-3 0.0508 0.0826** 0.0672 (0.0384) (0.042) (0.0427) MAt-4 0.3347*** 0.3349*** 0.3868*** (0.0461) (0.05) (0.051) GOOGt-1 0.004*** (0.0007) GOOGt-2 0.0026*** 0.003*** GOOGt-3 0.0009 0.0011 (0.0008) GOOGt-4 0.0005 0.0003 ADRt-1 ** (0.0016) Constant *** 14.183*** *** (0.0256) (0.1218) (0.1851) Trend Included Log likelihood 550.88 571.3 573.91 ME 0.0007 0.0004 RMSE 0.0787 0.0755 0.0751 MAE 0.0582 0.0554 0.0551 MPE 0.0016 0.0002 MAPE 0.3937 0.3748 0.3727 MASE 0.9289 0.8845 0.8797 Note: Dependent Variable: Ln(DEM). DEM is the weekly average of room nights demand aggregated for US. All models are of seasonally adjusted ARIMA(1,0,4) type.

11 Forecasting Weekly Occupancy Rate Using ARIMAX Models
Results Forecasting Weekly Occupancy Rate Using ARIMAX Models (1) (2) (3) ARt-1 0.8532*** 0.7915*** 0.7966*** (0.0324) (0.0486) (0.045) MAt-1 *** *** * (0.0538) (0.0629) (0.0709) MAt-2 * -0.079 -0.136** (0.0484) (0.05) (0.053) MAt-3 0.0723* 0.1025** 0.0822* (0.041) (0.0452) (0.0466) MAt-4 0.2876*** 0.2759*** 0.3283*** (0.0446) (0.0498) (0.0502) GOOGt-1 0.2069*** 0.2009*** (0.0421) (0.0408) GOOGt-2 0.1305*** 0.1517*** (0.0425) GOOGt-3 0.0298 0.0383 (0.0442) (0.0439) GOOGt-4 0.0205 (0.0426) (0.0418) ADRt-1 *** (0.0845) Constant 60.619*** *** *** (1.3894) (7.3846) ( ) Trend Included Log likelihood ME 0.0212 0.0190 0.0219 RMSE 4.2870 4.1569 4.1266 MAE 3.2749 3.1535 3.1075 MPE MAPE 5.7646 5.5423 5.4487 MASE 0.9254 0.8911 0.8782 Note: Dependent Variable: Occupancy rate. All models are of ARIMA(1,0,4) type.

12 Conclusion On a monthly frequency, global search trends are significantly reflective of future demand after controlling for known determinants of these variables. On a weekly basis, domestic trends significantly improve the weekly forecasts of demand and occupancy rates.

13 Questions / Suggestions?
Thank you


Download ppt "Internet Search and Hotel Revenues"

Similar presentations


Ads by Google