Download presentation
Presentation is loading. Please wait.
7
This is so WRONG!
10
-13.6 eV -18.6 eV -40 eV
11
S How is amount of mixing determined: l = - ∫ Y2HY1 dt E2 - E1
energy of perturbation energy separation E2 - E1 How is DE determined: (DE is change in E after mixing) DE = ( ∫ Y2HY1 dt)2 S (energy of perturbation)2 energy separation E2 - E1
12
3s Na I Br (-12.5 eV) Cl (-13.7 eV) F (-18.6 eV) F -
13
-10.6 eV -15.8 eV -19 eV -32 eV
14
s (non-bonding) s (bonding) s (anti- bonding) p (anti- bonding) p (bonding)
15
What’s better and worse here?
16
Cartesian Coordinates (Angstroms) Atom X Y Z
SPARTAN STUDENT MECHANICS PROGRAM: PC/x Run type: Geometry optimization (Analytical Gradient) (MM/Amide correction used) Model: RHF/PM3 Number of shells: 4 3 S shells 1 P shells Number of basis functions: 6 Number of electrons: 8 Use of molecular symmetry enabled Molecular charge: Spin multiplicity: 1 Point Group = CNV Order = 2 Nsymop = 4 This system has 2 degrees of freedom Initial Hessian option Hessian from MMFF94 calculation used. Max Max Neg. Cycle Energy Grad. Dist Eigen Heat of Formation: kJ/mol Energy Due to Solvation Solvation Energy Semi-Empirical Program CPU Time : Semi-Empirical Program Wall Time: Cartesian Coordinates (Angstroms) Atom X Y Z 1 O O 2 H H 3 H H Point Group = CNV Order = 2 Nsymop = 4
17
Closed-Shell Molecular Orbital Coefficients MO # Eigenvalues: (ev): A B A B A1 1 O1 S 2 O1 PX 3 O1 PY 4 O1 PZ 5 H1 S 6 H2 S MO # Eigenvalues: (ev): B1 1 O1 S 2 O1 PX 3 O1 PY 4 O1 PZ 5 H1 S 6 H2 S Atomic Charges: Electrostatic Mulliken Natural 1 O : 2 H : 3 H : Bond Orders Mulliken 1 O H : 2 O H :
18
but not equivalent! but not equivalent! anti-bonding non-bonding Two
“lone pairs” but not equivalent! bonding Two “O-H bonds” but not equivalent!
19
BH3 Closed-Shell Molecular Orbital Coefficients MO # 1 2 3 4 5
Eigenvalues: (ev): A1' E' E' A2" A1' 1 B1 S 2 B1 PX 3 B1 PY 4 B1 PZ 5 H1 S 6 H2 S 7 H3 S MO # Eigenvalues: (ev): E' E' 1 B1 S 2 B1 PX 3 B1 PY 4 B1 PZ 5 H1 S 6 H2 S 7 H3 S
21
Mainly B 2p lcao’s Note p bonds! Mainly B 2s-F 2p lcao’s Mainly F 2s lcao’s
22
Benzene
24
How does the bonding concepts we’ve seen here relate to what you might have seen before, in Organic?
25
Now, can we tackle bigger molecules, like one with six bonds?
z y eg x 3d t2g Now, can we tackle bigger molecules, like one with six bonds? 3p t1u 3s a1g eg t1u a1g . F Oh S valence orbitals (9) F donor (sp) orbitals (6) Instead of; . F 2p Because harder to draw
26
. F SF6 . F S valence orbitals (9) F donor (sp) orbitals (6) z y x t1u
a1g z y t1u eg eg x 3d t2g t2g 3p t1u 3s a1g eg eg t1u a1g . F Oh S valence orbitals (9) t1u F donor (sp) orbitals (6) a1g SF6 Instead of; . F 2p Because harder to draw
28
. F SF6 Bonding MO’s 8 e- gives 4 bonds! 3d 3p 3s a1g t1u eg eg t2g
Oh t1u Bonding MO’s 8 e- gives 4 bonds! a1g SF6
29
SF6 Two views: A) 4 bonds distributed over six S-F pairs
a1g t1u Two views: A) 4 bonds distributed over six S-F pairs B) 4 bonds (covalent ) + 2 “bonds” ionic (S6+-F-) 3p t1u 3s a1g eg eg t1u a1g t1u a1g SF6
32
Probably need to use a computer….
Getting Larger: Probably need to use a computer…. MO # , Energy, eV Mo(CO)6 Molybdenum carbonyl
33
MO 24 MO 22 MO 13 MO 1
34
MO 50 - LUMO MO 49 - HOMO MO 44 MO 35 MO 39
35
LUMO Sometimes MOs are hard to interpret HOMO
36
L a.o.’s M a.o.’s ML4 - D4h
37
3s Na I Br (-12.5 eV) Cl (-13.7 eV) F (-18.6 eV) F -
38
: L ML6 3rd row M, Valence Atomic orbitals 6s-donors s ONLY,
4p t1u 4s a1g eg 3d t2g 3rd row M, Valence Atomic orbitals eg t1u a1g : L Oh 6s-donors s ONLY, Like H or NH3 ML6
39
Symmetry Adapted Group Orbitals for 6 s-donors
40
: L ML6 3rd row M, Valence Atomic orbitals 6s-donors s ONLY,
t1u a1g eg 4p t1u 4s a1g eg t2g 3d t2g 3rd row M, Valence Atomic orbitals eg t1u a1g : eg L Oh t1u 6s-donors s ONLY, Like H or NH3 a1g ML6
41
: L ML6 M-L s anti-bonding MO’s 3rd row M, Valence Atomic orbitals
t1u a1g M-L s anti-bonding MO’s eg 4p t1u 4s a1g eg t2g 3d t2g 3rd row M, Valence Atomic orbitals eg t1u a1g eg : L Oh t1u 6s-donors s ONLY, Like H or NH3 M-L s bonding MO’s a1g ML6
42
What is Do? : L ML6 M-L s anti-bonding MO’s 3rd row M, Valence Atomic
t1u a1g M-L s anti-bonding MO’s eg 4p t1u What is Do? 4s a1g eg t2g 3d t2g 3rd row M, Valence Atomic orbitals eg t1u a1g eg : L Oh t1u 6s-donors s ONLY, Like H or NH3 M-L s bonding MO’s a1g ML6
43
Symmetry Adapted Group Orbitals for 6 p-donors
45
.. L : L M-L s anti-bonding MO’s 12 L p orbitals 3rd row M, Valence
t1u a1g M-L s anti-bonding MO’s 4p t1u eg 4s a1g eg 3d t2g t2g .. 12 L p orbitals t2g t2u L t1g t1u 3rd row M, Valence Atomic orbitals eg t1u a1g eg : L Oh t1u 6s -donors Like Cl- M-L s bonding MO’s a1g
46
Effect on Do? : L M-L s anti-bonding MO’s 12 L p orbitals 3rd row M,
t1u a1g M-L s anti-bonding MO’s 4p t1u eg Effect on Do? 4s a1g t2g eg 3d t2g t2g t2u 12 L p orbitals t1g t1u t2g 3rd row M, Valence Atomic orbitals eg t1u a1g eg : L Oh t1u 6s -donors Like Cl- M-L s bonding MO’s a1g
47
C O : L ML6 M-L s anti-bonding MO’s 12 L orbitals 12 L p orbitals
t1u a1g M-L s anti-bonding MO’s eg C O 4p t1u t2g 12 L orbitals t2g t2u 4s a1g t1g t1u eg 3d t2g t2g t2g t2u 12 L p orbitals t1g t1u 3rd row M, Valence Atomic orbitals eg t1u a1g eg : L Oh t1u 6s -acceptors Like CO, CN- M-L s bonding MO’s a1g ML6
48
Do Do Do Case 1. L is p innocent (sigma donor only) Case 2.
eg eg eg t2g Do t2g Do t2g 12 L orbitals Do eg eg eg t2g t2g t2g t2g 3d t2g 3d 3d t2g 12 L orbitals t2g Case 1. L is p innocent (sigma donor only) Case 2. L is p base (sigma donor and p donor) Case 3. L is p acid (sigma donor and p acceptor)
49
Probably need to use a computer….
Getting Larger: Probably need to use a computer…. MO # , Energy, eV Mo(CO)6 Molybdenum carbonyl
50
MO 24 MO 22 MO 13 MO 1
51
MO 50 - LUMO MO 49 - HOMO MO 44 MO 35 MO 39
52
LUMO Sometimes MOs are hard to interpret HOMO
53
L a.o.’s M a.o.’s ML4 - D4h
54
dx2-y2 dz2 dyz dxz dxy L a.o.’s M a.o.’s ML4 - D4h
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.