Presentation is loading. Please wait.

Presentation is loading. Please wait.

Valorisation of Low-Grade Waste Heat

Similar presentations


Presentation on theme: "Valorisation of Low-Grade Waste Heat"— Presentation transcript:

1 Valorisation of Low-Grade Waste Heat
Vision: No useful heat flow without use! Felix Ziegler | Institut für Energietechnik

2 Valorisation of Low-Grade Waste Heat
Options Absorption cooling Steam jet cycle Honigmann cycle Efficiency, and cost Felix Ziegler | Institut für Energietechnik

3 Temperature of heat flow
in out Temperature of heat flow upgraded: T3=120°C source: T2=80°C work: T→∞ cold: T0=5°C ambient: T1=35°C # # # # #5 High source: T4=180°C

4 Temperature of heat flow
in out Temperature of heat flow upgraded: T3=120°C source: T2=80°C work: T→∞ cold: T0=-150°C ambient: T1=35°C High source: T4=180°C # # # # #5

5 Single-effect absorption chiller Drive Heat sink Cold Heat sink
Cold is produced from heat

6 Nominal cooling capacity 50kW

7 Variation of driving heat @ tsink=30°C, Vsink=3,8l/s, tcold=21/16°C
Driving temperature in [°C] 0,9 l/s 0,6 l/s 0,3 l/s 0,1 l/s Cooling capacity [kW] 40K Temperaturspreizung um Ein/Austritt ergänzen

8 Control: Minimisation of auxiliaries
Seasonal Energy Efficiency Ratio: Control strategy SEERel SEERth #1: Classic drive (Temperature) 13 0,75 #2: Heat sink (Temperature and flow rate) 19 #3: Drive 14 #4: Combination (#2+#3) 22

9 „Honigmann“ cycle: storage and conversion of low-grade heat
Pressure Vapour pressure depression „mechanical potential“ Water Aqueous Solution Liquid-Vapour-Equilibrium Temperature

10 pressure temperature Discharging (work!) pressure temperature Charging (Heat!)

11 Honigmann fireless locomotive (1883)
Quelle: Mähr, Vergessene Erfindungen Honigmann fireless locomotive (1883)

12 Temperature of heat flow
in out Temperature of heat flow upgraded: T3=120°C source: T2=80°C work: T→∞ cold: T0=5°C ambient: T1=35°C # # # # #5 High source: T4=180°C

13

14

15 Valorisation of Low-Grade Waste Heat
There are many challenging / promising options Efficient heat transfer is key to implementation Felix Ziegler | Institut für Energietechnik

16 Steam ejector cycle Q Boiler Pump Condenser Ejector Throttle
2 1 Boiler Steam ejector cycle Pump Condenser Ejector Throttle Evaporator

17 Steam jet cycle exhaust hx CAC RHX compressor turbine
combustion engine Steam jet cycle compressor turbine exhaust hx CAC RHX

18

19 Rückkühlvariationen (Biene) @ t_FW=90°C, m_FW=0,9kg/s, t_KW=21/16°C
3,8 l/s 2,0 l/s 1,5 l/s Cooling capacity [kW] Phydraulic = nominal =100% 1,0 l/s Kann entfallen! Phydraulic = 1/64*nominal = 1,5% Heat sink temperature, inlet [°C]

20

21 Vorteile des Prozesses
Flexible Be- und Entladung Nutzung von Abfallwärme Keine Selbstentladung

22 Single-effect absorption chiller
In the Regenerator G it is regenerated, consuming the driving heat. The absorbed refrigerant is vaporised again. A solution circulates between absorber A and regenerator G. Single-effect absorption chiller In the absorber it absorbs refrigerant vapour, rejecting heat.

23 The refrigerant is liquefied in the absorber, rejecting heat...

24 The refrigerant is liquefied in the absorber, rejecting heat...
The vapour flows to the absorber, again. ...and is vapourised again in the evaporator, consuming heat (producing cold).


Download ppt "Valorisation of Low-Grade Waste Heat"

Similar presentations


Ads by Google