Presentation is loading. Please wait.

Presentation is loading. Please wait.

Biosignatures Svetlana Berdyugina

Similar presentations


Presentation on theme: "Biosignatures Svetlana Berdyugina"— Presentation transcript:

1 Biosignatures Svetlana Berdyugina
Kiepenheuer Institut für Sonnenphysik, Freiburg, Germany SPW3, Tenerife, 2002 Hot Molecules in Exoplanets and Inner Disks

2 Content Polarized biopigment absorption Exoplanet imaging
Lab measurements Modeling Earth-like planets Exoplanet imaging Exo-Earths Proxima b SPW3, Tenerife, 2002

3 Polarized Biopigments
Photosynthesis is the interaction of life with stellar light produces conspicuous biosignatures in polarized light (broadly used in botanic and agriculture for remote sensing of crops) source of energy for nearly all life on Earth (captures 130 TW) very likely to emerge early and last long on another planet Common photosynthetic bio-molecules (pigments) in plants, algae, bacteria: Chlorophyl (green) Carotenoids (yellow/orange) Anthocyanins (red/purple) Phycobilin (blue)

4 Lab Measurements Lab measurements: reflection spectra 400-1000 nm
(Berdyugina et al. 2016, IJA Schwesinger & Berdyugina, in prep) Lab measurements: reflection spectra nm R~ different angles full Stokes vector Samples: vegetation bacteria sand/rocks paper sample iris /4 LP fiber

5 Chlorophyl (Berdyugina et al. 2016, IJA)

6 Carotenoids (Berdyugina et al. 2016, IJA)

7 Anthocyanins (Berdyugina et al. 2016, IJA)

8 Anthocyanins (Berdyugina et al. 2016, IJA)

9 Photosynthetic Bacteria
Bio-aerosols in the Earth’s atmosphere 25% of total airborne particles larger than 0.2 μm Biosphere signature Bio-pigment functions store energy protect from UV radiation Samples collected from atmosphere grown in the lab Polarimetric measurements wet & dry samples reflection & transmission Stokes IQUV

10 Cyanobacterium

11 Microbacterium

12 Methylobacterium

13 Sands

14 Rocks

15 Planet Model Earth atmosphere as basis (Stam 2008, modified):
transparent, optically thin gaseous atmosphere optically thick H2O clouds black ocean w. specular refl. scattering & absorption major bands of O2, O3, H2O coverage fractions by plants, solids, and water our lab reflection & polarization curves

16 Earths with 100% Vegetation
(Berdyugina et al. 2016, IJA) Bio-molecules are distinguished best in polarized light!

17 Earths with 100% Sand & Rocks
Sandy and Vegi Earths differ in polarized light (exc red?)

18 80% Vegetation + 20% Clouds Clouds gradually wash out flux signal  need clear days! clouds100%

19 80% Vegetation + 20% Ocean Black ocean with specular reflection preserves bio-signals clear ocean 100%

20 BRDF (Schwesinger & Berdyugina, in prep.) Intensity: Polarization:

21 Alderaan Tatooine Hoth Endor Exo-Earth Models Model:
Multiple scat./reflect. Var. opt. thickness Surface structures Clouds Snow Ocean Vegetation/bacteria Sand (Schwesinger & Berdyugina, in prep) Alderaan Tatooine Hoth Endor

22 Exo-Earth Models Tatooine Hoth

23 Exoplanet Reflected Light
Inversion Algorithm Occam.Appr. (Berdyugina 1998) Parameters: Orbit normal inclination: iorb Orbit normal azimuth: orb Planet axis inclination: irot Orbital period : Porb Planet rotation period: : Prot Result: Planet albedo map: A(lat,long) Inversion quality: IQ, SD, 2 (simul. data) Parameter errors (Berdyugina & Kuhn, in prep) z iorb y orb x

24 Exo-Earth Reflected Light Simulations
NASA Earth Observations (NEO) database: Albedo maps (2003/03) Exo-Earth Light Curve (Berdyugina & Kuhn, in prep)

25 Exo-Earth Inversion 6x6 North up irot=60, iorb=30, orb=60 (Npix=1800) Porb = 60Prot (Mdata=3000) S/N=200 IQ=89%, SD=10% (Berdyugina & Kuhn, in prep)

26 Exo-Earth Inversion 6x6 South up irot=60, iorb=30, orb=60 (Npix=1800) Porb = 60Prot (Mdata=3000) S/N=200 IQ=89%, SD=15% (Berdyugina & Kuhn, in prep)

27 Proxima b: Tidally locked
6x6 North up irot=60, iorb=30, orb=60 (Npix=1800) Porb = Prot , Norb=20 (Mdata= 600) S/N=100 IQ=84%, SD=13%

28 Proxima b: 3:2 resonance locked
6x6 North up irot=60, iorb=30, orb=60 (Npix=1800) 2Porb = 3Prot , Norb=20 (Mdata= 600) S/N=100 IQ=87%, SD=12%

29 Proxima b: Parameter Retrieval
6x6 North up irot=60, iorb=30, orb=60 (Npix=1800) Porb = Prot , Norb=20 (Mdata= 600) S/N=100

30 VLT State-of-the-art PSF Langlois et al. 2014, SPIE

31 Telescopes to Detect ET Life
Proxima b: SPHERE best PSF, 1h, A=0.3, full illumination

32 Number of observable HZ exo-Earths

33 Exo-Life Finder 20m-class interferometric telescope for high-contrast imaging of exoplanets will provide first surface images of Proxima b

34 Conclusions Biopigment polarization is a sensitive bio-marker to detect life on other planets characteristic spectral signatures, polarization is much more sensitive than flux spectra detection Indirect imaging (mapping) of exoplanets is possible with next generation large telescopes Telescopes with D>20m are needed to see Proxima b and beyond.


Download ppt "Biosignatures Svetlana Berdyugina"

Similar presentations


Ads by Google