Presentation is loading. Please wait.

Presentation is loading. Please wait.

M ? n m<n. m ? n m<n Compressive sensing ? m ? n k k ≤ m<n.

Similar presentations


Presentation on theme: "M ? n m<n. m ? n m<n Compressive sensing ? m ? n k k ≤ m<n."— Presentation transcript:

1

2 m ? n m<n

3 Compressive sensing ? m ? n k k ≤ m<n

4 Robust compressive sensing
? e z y=A(x+z)+e Approximate sparsity Measurement noise

5 Apps: 1. Compression W(x+z) x+z BW(x+z) = A(x+z)
M.A. Davenport, M.F. Duarte, Y.C. Eldar, and G. Kutyniok, "Introduction to Compressed Sensing,"in Compressed Sensing: Theory and Applications, Cambridge University Press, 2012. 

6 Apps: 2. Network tomography
Weiyu Xu; Mallada, E.; Ao Tang; , "Compressive sensing over graphs," INFOCOM, 2011 M. Cheraghchi, A. Karbasi, S. Mohajer, V.Saligrama: Graph-Constrained Group Testing. IEEE Transactions on Information Theory 58(1): (2012)

7 Apps: 3. Fast(er) Fourier Transform
H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse fourier transform. In Proceedings of the 44th symposium on Theory of Computing (STOC '12). ACM, New York, NY, USA,

8 Apps: 4. One-pixel camera

9 y=A(x+z)+e

10 y=A(x+z)+e

11 y=A(x+z)+e

12 y=A(x+z)+e

13 y=A(x+z)+e (Information-theoretically) order-optimal

14 (Information-theoretically) order-optimal
Support Recovery

15 SHO(rt)-FA(st) O(k) meas., O(k) steps

16 SHO(rt)-FA(st) O(k) meas., O(k) steps

17 SHO(rt)-FA(st) O(k) meas., O(k) steps

18 1. Graph-Matrix A d=3 n ck

19 1. Graph-Matrix A d=3 n ck

20 1. Graph-Matrix

21 2. (Most) x-expansion |S| ≥2|S|

22 3. “Many” leafs L+L’≥2|S| |S| ≥2|S| 3|S|≥L+2L’ L≥|S| L+L’≤3|S|

23 4. Matrix

24 Encoding – Recap. 1

25 Decoding – Initialization

26 Decoding – Leaf Check(2-Failed-ID)

27 Decoding – Leaf Check (4-Failed-VER)

28 Decoding – Leaf Check(1-Passed)

29 Decoding – Step 4 (4-Passed/STOP)

30 Decoding – Recap. 1 ? ? ?

31 Decoding – Recap. 1

32

33 Noise/approx. sparsity

34 Meas/phase error

35 Correlated phase meas.

36 Correlated phase meas.

37 Correlated phase meas.


Download ppt "M ? n m<n. m ? n m<n Compressive sensing ? m ? n k k ≤ m<n."

Similar presentations


Ads by Google