Download presentation
Presentation is loading. Please wait.
Published byWilla Griffith Modified over 6 years ago
2
m ? n m<n
3
Compressive sensing ? m ? n k k ≤ m<n
4
Robust compressive sensing
? e z y=A(x+z)+e Approximate sparsity Measurement noise
5
Apps: 1. Compression W(x+z) x+z BW(x+z) = A(x+z)
M.A. Davenport, M.F. Duarte, Y.C. Eldar, and G. Kutyniok, "Introduction to Compressed Sensing,"in Compressed Sensing: Theory and Applications, Cambridge University Press, 2012.
6
Apps: 2. Network tomography
Weiyu Xu; Mallada, E.; Ao Tang; , "Compressive sensing over graphs," INFOCOM, 2011 M. Cheraghchi, A. Karbasi, S. Mohajer, V.Saligrama: Graph-Constrained Group Testing. IEEE Transactions on Information Theory 58(1): (2012)
7
Apps: 3. Fast(er) Fourier Transform
H. Hassanieh, P. Indyk, D. Katabi, and E. Price. Nearly optimal sparse fourier transform. In Proceedings of the 44th symposium on Theory of Computing (STOC '12). ACM, New York, NY, USA,
8
Apps: 4. One-pixel camera
9
y=A(x+z)+e
10
y=A(x+z)+e
11
y=A(x+z)+e
12
y=A(x+z)+e
13
y=A(x+z)+e (Information-theoretically) order-optimal
14
(Information-theoretically) order-optimal
Support Recovery
15
SHO(rt)-FA(st) O(k) meas., O(k) steps
16
SHO(rt)-FA(st) O(k) meas., O(k) steps
17
SHO(rt)-FA(st) O(k) meas., O(k) steps
18
1. Graph-Matrix A d=3 n ck
19
1. Graph-Matrix A d=3 n ck
20
1. Graph-Matrix
21
2. (Most) x-expansion |S| ≥2|S|
22
3. “Many” leafs L+L’≥2|S| |S| ≥2|S| 3|S|≥L+2L’ L≥|S| L+L’≤3|S|
23
4. Matrix
24
Encoding – Recap. 1
25
Decoding – Initialization
26
Decoding – Leaf Check(2-Failed-ID)
27
Decoding – Leaf Check (4-Failed-VER)
28
Decoding – Leaf Check(1-Passed)
29
Decoding – Step 4 (4-Passed/STOP)
30
Decoding – Recap. 1 ? ? ?
31
Decoding – Recap. 1
33
Noise/approx. sparsity
34
Meas/phase error
35
Correlated phase meas.
36
Correlated phase meas.
37
Correlated phase meas.
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.