Download presentation
Presentation is loading. Please wait.
1
Resolved CO & H2 Abundance Structure in TW Hya
Kamber Schwarz, University of Michigan Edwin Bergin, University of Michigan L. Ilsedore Cleeves, Harvard-Smithsonian CfA Geoffrey Blake, California Institute of Technology Ke Zhang, University of Michigan Karin Öberg, Harvard-Smithsonian CfA Ewine van Dishoeck, Leiden University Chunhua Qi, Harvard-Smithsonian CfA Half a Decade of ALMA: Cosmic Dawns Transformed September 22, 2016
2
CO in Protoplanetary Disks
Resolvable snow line (Qi+ 2013) Good tracer of dense ISM gas Complicated in disks by High density Chemistry Temperature Gradients Under predicts mass (Bergin+ 2013, Miotello+ 2014, Reboussin+ 2015) Solution: HD Qi+ 2013
3
HD in Protoplanetary Disks
Flux wavelength Bergin+ 2013 Flux wavelength McClure+ 2016 TW Hya DM Tau GM Aur Mdisk: M M M X(CO): (0.1-3) × ≤ 2 × X(CO) ISM ~ 10-4
4
CO Abundance in TW Hya X(CO) = (0.1-3) × 10-5
Favre+ 2013 Tex(C18O) = 20 K Tex(C18O) = Tex(HD) X(CO) temperature (K) X(CO) = (0.1-3) × 10-5 Sensitive to thermal structure
5
ALMA Observations beam: 0”.5 × 0”.3 (27 AU × 16 AU) beam: 0”.4 × 0”.2
6
ALMA Observations thick thin beam: 0”.5 × 0”.3 (27 AU × 16 AU) thick
7
Temperature from CO 13CO 3-2 TK TK 13CO 6-5 C18O 3-2 C18O 6-5
thick C18O 6-5 C18O 3-2 13CO 3-2 13CO 6-5 TK Schwarz+ 2016
8
Temperature from CO 13CO 3-2 TK 13CO 6-5 C18O 3-2 ΣCO C18O 6-5
thin ΣCO TK thick C18O 6-5 C18O 3-2 13CO 3-2 13CO 6-5 Schwarz+ 2016 Correct for fractional pop. in J = 6 & J = 3
9
Warm Mass from HD Derive HD emission profile
Σ(R) shape from Menu small grains Scale to observed emission NJ=1(HD) Σgas HD/H2 = 3e-5 HD emission profile
10
Warm Mass from HD Excludes: Warm (>20 K) gas mass 5.6×10-3 M
Gas < 20 K Midplane where τ112μm>1 Warm (>20 K) gas mass ×10-3 M Total gas mass ~5×10-2 M Consistent with Bergin upper limit Schwarz+ 2016
11
CO Abundance Depleted everywhere Returns inside 30 AU
X(CO)ISM ~ 10-4 Returns inside 30 AU To an extent see also Nomura+ 2016 Schwarz+ 2016
12
Where’s the carbon? Self shielding raises 12CO/C18O (Miotello+ 2014)
Expected for 10-2 M X(CO) = 3.2×10-6 Hydrocarbons? Need to remove from chemistry Schwarz+ 2016
13
Where’s the carbon? Icy pebbles? (e.g. Xu+ 2016)
Results in C/O > 1 (Bergin+ 2016) Explains C2H & c-C3H2 rings CO grain
14
Where’s the carbon? Icy pebbles? (e.g. Xu+ 2016)
Results in C/O > 1 (Bergin+ 2016) Explains C2H & c-C3H2 rings CO grain Bergin+ 2016
15
ALMA Observations: Snow Line
N2H+ 4-3 Schwarz+ 2016 Surface CO snow line detected in 2 transitions
16
ALMA Observations: Snow Line
N2H+ 4-3 Schwarz+ 2016 Surface CO snow line detected in 2 transitions
17
ALMA Observations: Snow Line
ice gas J = 3 Schwarz+ 2016 J=3 & J=6 emit near the surface Do not trace midplane
18
Tracing the Warm Molecular Layer
ice gas Schwarz+ 2016 Extended emission from the warm molecular layer Tsub < 21 K EB/k ~ 960 K EB/k = 885 K for CO-CO ice (Oberg+ 2005)
19
Midplane Snow Line Solve for TK where freeze out = desorption:
Schwarz+ 2016 Compare with model TK (Cleeves+ 2015) R = AU We can test this prediction!
20
Summary 5.6×10-3 M warm (>20 K) disk X(CO) ~ 10-6
CO does not return to the gas inside the snow line Grains coated in CO ice Surface snow line ~30 AU Midplane snow line 17 AU
21
ΣHD Assumption Difference < factor of 3 for R=1-40 AU Schwarz+ 2016
Menu+ 2014 Cleeves+ 2015 Andrews+ 2012 Schwarz+ 2016
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.