Download presentation
Presentation is loading. Please wait.
Published byRuby Manning Modified over 6 years ago
1
Fig. 12-1 Figure 12.1 How do a cell’s chromosomes change during cell division?
2
(a) Reproduction (b) Growth and development (c) Tissue renewal 100 µm
Fig. 12-2 100 µm 200 µm 20 µm (a) Reproduction (b) Growth and development (c) Tissue renewal Figure 12.2 The functions of cell division
3
0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome
Fig. 12-4 0.5 µm Chromosomes DNA molecules Chromo- some arm Chromosome duplication (including DNA synthesis) Centromere Sister chromatids Figure 12.4 Chromosome duplication and distribution during cell division Separation of sister chromatids Centromere Sister chromatids
4
S (DNA synthesis) G1 Cytokinesis G2 Mitosis
Fig. 12-5 INTERPHASE S (DNA synthesis) G1 Cytokinesis G2 Mitosis Figure 12.5 The cell cycle MITOTIC (M) PHASE
5
Chromosome, consisting of two sister chromatids
Fig. 12-6 G2 of Interphase Prophase Prometaphase Metaphase Anaphase Telophase and Cytokinesis Centrosomes (with centriole pairs) Chromatin (duplicated) Early mitotic spindle Aster Centromere Fragments of nuclear envelope Nonkinetochore microtubules Metaphase plate Cleavage furrow Nucleolus forming Figure 12.6 The mitotic division of an animal cell Daughter chromosomes Nucleolus Nuclear envelope Plasma membrane Chromosome, consisting of two sister chromatids Kinetochore Kinetochore microtubule Spindle Centrosome at one spindle pole Nuclear envelope forming
6
Fig. 12-7 Aster Centrosome Sister chromatids Microtubules Chromosomes Metaphase plate Kineto- chores Centrosome 1 µm Figure 12.7 The mitotic spindle at metaphase Overlapping nonkinetochore microtubules Kinetochore microtubules 0.5 µm
7
Figure 12.9 Cytokinesis in animal and plant cells
Vesicles forming cell plate Wall of parent cell 1 µm 100 µm Cleavage furrow Cell plate New cell wall Figure 12.9 Cytokinesis in animal and plant cells Contractile ring of microfilaments Daughter cells Daughter cells (a) Cleavage of an animal cell (SEM) (b) Cell plate formation in a plant cell (TEM)
8
10 µm Fig. 12-10 Nucleus Chromatin condensing Nucleolus Chromosomes
Cell plate Figure Mitosis in a plant cell 1 Prophase 2 Prometaphase 3 Metaphase 4 Anaphase 5 Telophase
9
Chromosomes 2 Prometaphase Fig. 12-10b
Figure Mitosis in a plant cell 2 Prometaphase
10
Fig c Figure Mitosis in a plant cell 3 Metaphase
11
Fig d Figure Mitosis in a plant cell 4 Anaphase
12
10 µm Cell plate 5 Telophase Fig. 12-10e
Figure Mitosis in a plant cell 5 Telophase
13
Cell wall Origin of replication Plasma membrane E. coli cell Bacterial
Fig Cell wall Origin of replication Plasma membrane E. coli cell Bacterial chromosome Two copies of origin Origin Origin Figure Bacterial cell division by binary fission
14
Fig Bacterial chromosome (a) Bacteria Chromosomes Microtubules Intact nuclear envelope (b) Dinoflagellates Kinetochore microtubule Intact nuclear envelope Figure A hypothetical sequence for the evolution of mitosis (c) Diatoms and yeasts Kinetochore microtubule Fragments of nuclear envelope (d) Most eukaryotes
15
G1 checkpoint Control system S G1 G2 M M checkpoint G2 checkpoint
Fig G1 checkpoint Control system S G1 G2 M Figure Mechanical analogy for the cell cycle control system M checkpoint G2 checkpoint
16
G0 G1 G1 G1 checkpoint (b) Cell does not receive a go-ahead signal
Fig G0 G1 checkpoint Figure The G1 checkpoint G1 G1 Cell receives a go-ahead signal (b) Cell does not receive a go-ahead signal
17
M G1 S G2 M G1 S G2 M G1 Fig. 12-17 MPF activity Cyclin concentration
Time (a) Fluctuation of MPF activity and cyclin concentration during the cell cycle G1 S Cdk Figure Molecular control of the cell cycle at the G2 checkpoint Cyclin accumulation M Degraded cyclin G2 G2 Cdk Cyclin is degraded checkpoint Cyclin MPF (b) Molecular mechanisms that help regulate the cell cycle
18
Scalpels Petri plate Without PDGF cells fail to divide With PDGF
Fig Scalpels Petri plate Without PDGF cells fail to divide Figure The effect of a growth factor on cell division With PDGF cells prolifer- ate Cultured fibroblasts 10 µm
19
Density-dependent inhibition
Fig Anchorage dependence Density-dependent inhibition Density-dependent inhibition Figure Density-dependent inhibition and anchorage dependence of cell division 25 µm 25 µm (a) Normal mammalian cells (b) Cancer cells
20
Lymph vessel Tumor Blood vessel Cancer cell Glandular tissue
Fig Lymph vessel Tumor Blood vessel Cancer cell Glandular tissue Metastatic tumor 1 A tumor grows from a single cancer cell. 2 Cancer cells invade neigh- boring tissue. 3 Cancer cells spread to other parts of the body. 4 Cancer cells may survive and establish a new tumor in another part of the body. Figure The growth and metastasis of a malignant breast tumor
21
G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and
Fig. 12-UN1 INTERPHASE G1 S Cytokinesis Mitosis G2 MITOTIC (M) PHASE Prophase Telophase and Cytokinesis Prometaphase Anaphase Metaphase
22
Fig. 12-UN2
23
Fig. 12-UN3
24
Fig. 12-UN4
25
Fig. 12-UN5
26
Fig. 12-UN6
27
You should now be able to:
Describe the structural organization of the prokaryotic genome and the eukaryotic genome List the phases of the cell cycle; describe the sequence of events during each phase List the phases of mitosis and describe the events characteristic of each phase Draw or describe the mitotic spindle, including centrosomes, kinetochore microtubules, nonkinetochore microtubules, and asters Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
28
Compare cytokinesis in animals and plants
Describe the process of binary fission in bacteria and explain how eukaryotic mitosis may have evolved from binary fission Explain how the abnormal cell division of cancerous cells escapes normal cell cycle controls Distinguish between benign, malignant, and metastatic tumors Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.