Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dividing Monomials Tammy Wallace.

Similar presentations


Presentation on theme: "Dividing Monomials Tammy Wallace."β€” Presentation transcript:

1 Dividing Monomials Tammy Wallace

2 Dividing Monomials The opposite of division is ______________. And when multiplying monomials, the rule says to ________ the coefficients and _____ the exponents. Because division and multiplication are opposites, when dividing monomials, ______ the coefficients and ________ the exponents. multiplication multiply add divide subtract

3 DIVIDING MONOMIALS: Divide the coefficients and subtract the exponents
NUMBERS VARIABLES PRODUCT OF NUMBERS AND VARIABLES πŸπŸ– πŸ‘ = _____ 𝒙 πŸ“ 𝒙 πŸ‘ What part of the rule should be applied? = ( π‘₯ ____βˆ’_____ ) Β  πŸ” 𝒙 πŸ— π’š 𝟐 πŸ‘ 𝒙 πŸ’ π’š What part(s) of the rule should be applied? 6Γ·3 = ____ = ____ π‘₯ 9 𝑦 2 π‘₯ 4 𝑦 = ____π‘₯ ___βˆ’___ 𝑦 ____βˆ’____ Β  Divide the coefficients and subtracting the exponents. Subtract exponents πŸ” πŸ“ πŸ‘ 𝟐 𝟐 = 𝒙 𝟐 πŸ— πŸ’ 𝟐 𝟏 𝟐 = 𝟐 𝒙 πŸ“ π’š

4 DIVIDING MONOMIALS: Divide the coefficients and subtract the exponents
NUMBERS VARIABLES PRODUCT OF NUMBERS AND VARIABLES Β Sometimes, reducing is easier than dividing.Β  πŸ” πŸπŸ’ = _____ 𝒂 πŸ’ 𝒃 πŸ• 𝒂 𝟐 𝒃 What part of the rule should be applied? = π‘Ž _______βˆ’_______ 𝑏 _______βˆ’_______ Β  4 𝒙 5 6 𝒙 2 What part(s) of the rule should be applied? 4 6 = Divide the coefficients and subtracting the exponents. Subtract exponents 𝟐 πŸ‘ πŸ’ 𝟐 πŸ• 𝟏 𝟏 πŸ’ = 𝟐 πŸ‘ 𝒙 _______ = 𝒂 𝟐 𝒃 πŸ” 5βˆ’2 = 𝟐 𝒙 πŸ‘ πŸ‘

5 Negative Exponents negative reciprocal term negative negative positive
When simplifying monomials, the value of an exponent can NEVER be ______ _____. After simplifying, ONLY take the ______________ of each _____ that has a ___________ exponent. This will turn ___________ exponents _______ __. negative reciprocal term negative negative positive

6 Negative Exponents 1 π‘Ž 2 π‘Ž βˆ’2 1 π‘Ž βˆ’2 fraction denominator π‘Ž βˆ’2 1
π‘Ž βˆ’2 1 π‘Ž βˆ’2 Β  Turn the term into a ___________. If it is already in that format, move to the next step. = ____________ To find the reciprocal, If the negative term is in the _________________, find it’s reciprocal by Β  Again, when changing a negative term to other side of the fraction, this makes the negative exponent fraction denominator π‘Ž βˆ’2 1 moving π‘Ž βˆ’2 to the numerator and 𝟏 to the denominator. move π‘Ž βˆ’2 to the denominator and 𝟏 to the numerator. When π‘Ž βˆ’2 changes to the other side of the fraction, the exponent becomes positive. positive. 𝒂 𝟐 𝟏 = 𝒂 𝟐 1 π‘Ž 2

7 Negative Exponents = 𝟏 𝒙 𝟏𝟏 π‘₯ 2 π‘₯ 13 𝟏𝟐 π‘₯ 2 πŸπŸ“ π‘₯ βˆ’5 = π‘₯ _____βˆ’______
π‘₯ 2 π‘₯ 13 𝟏𝟐 π‘₯ 2 πŸπŸ“ π‘₯ βˆ’5 How do you simplify this monomial? = π‘₯ _____βˆ’______ 1) Change any 3) What operation is done next? Simplify the coefficients. Subtract the exponents. 12 15 = 4 5 negative exponents to postive. 2 13 = 4 π‘₯ 2 π‘₯ 5 5 = 𝟏 𝒙 𝟏𝟏 = π‘₯ βˆ’11 1 = π‘₯ βˆ’11 add the exponents to like terms. = πŸ’ 𝒙 πŸ• πŸ“ = 4 π‘₯ 2 π‘₯ 5 5

8 Zero Exponents When simplifying monomials, if the exponent of a term simplifies to equal zero, the value of that term simplifies to equal 1

9 = 4π‘₯ 3 Simplify: 8 π‘₯ 6 𝑦 2 2 π‘₯ 3 𝑦 2 =4 π‘₯ 3 𝑦 0 = 4π‘₯ 3 1
= 4π‘₯ 6 𝑦 2 π‘₯ 3 𝑦 2 =4 π‘₯ 3 𝑦 0 = 4π‘₯ 3 1 = 4π‘₯ 3

10 Simplify: 5 π‘₯ 4 𝑦 βˆ’8 𝑧 0 1 = 1 1 =1

11 Simplify: βˆ’9 π‘₯ 8 βˆ’6 π‘₯ 2 𝑦 6 = 3 π‘₯ 8 2 π‘₯ 2 𝑦 6 = 3 π‘₯ 6 2 𝑦 6


Download ppt "Dividing Monomials Tammy Wallace."

Similar presentations


Ads by Google