Download presentation
Presentation is loading. Please wait.
1
Non-Hermitian quantum mechanics and localization
Naomichi Hatano Aoyama Gakuin University, Japan Collaborators D.R. Nelson (Harvard) A. Zee (UC Santa Barbara) N.H. and D.R. Nelson: PRL 77, 570 (1996) PRB 56, 8651 (1997) PRB 58, 8384 (1998) N.H.: Physica A 254, 317 (1998)
2
Why non-Hermitian? - provides a new viewpoint of Hermitian physics
- expresses physical phenomena effectively (1) Anderson localization Localization length (2) Resonant states Resonance lifetime (3) Flux-line pinning in type-II superconductors Vortex depinning transition
3
Outline 1. Non-Hermitian Anderson model and delocalization
2. Motivation I ____ Localization length 3. How does the delocalization happen? 4. Numerical examples 5. Motivation II ____ Resonant states 6. Motivation III ____ Vortex depinning in type-II superconductors
4
H ( p i g ) m V x Non-Hermitian Anderson model Continuum model
2 m V x g: “imaginary vector potential” (constant) V(x): random scalar potential g=0: (conventional) 1-electron Anderson model
5
H e e Lattice model t x e x x e x V x x 2
g e x e x 2 x 1 e g e x e x V x x x x asymmetric hopping vs. randomness
6
(iii) inverse localization length: = gc
Non-Hermitian delocalization g=0: localized states (i) g: delocalized at g = gc (ii) delocalization ~ complex eigenvalue (iii) inverse localization length: = gc
7
Imaginary gauge transformation
How does it happen? Imaginary gauge transformation g H ( p i ) 2 m V x : real, fixed H g
8
integrable for g only
9
Motivation (1) Localization length of Hermitian Anderson model
Hermitian case ( g = 0 ):
10
Delocalization of eigenfunction Note: Particle Density H
1D: L x = (Diagonalized 1000 1000 matrix) Note: Particle Density H R L ÷
11
Complex spectrum and delocalization g g real eigenvalue
1D: L x = (Diagonalized 1000 1000 matrix) real eigenvalue localized state g complex eigenv. delocalized state g
12
Localization length 1D: L x = 1000 (Diagonalized 1000 1000 matrix)
Lloyd model (Lorentzian random distribution): Hirota & Ishii (1971), Brezin & Zee (1998)
13
Motivation (3) Vortex pinning in high-Tc superconductors
14
Path-integral mapping
Nelson and Vinokur, PRB 48, (1993) TM : T ( ) exp( H Z D x cl E e f L H i
15
Pinning and localization
localized fn. depinning delocalized fn.
16
Motivation Resonance lifetime Unintegrable eigenfn. ( r ) ~ e
(2) Resonant states Resonance lifetime Unintegrable eigenfn. res ( r ) ~ e i k as
17
H V r ; x Aguilar, Balslev & Combes, Comm. Math. Phys. 22 (1971)
i g ) 2 m V r ; x Aguilar, Balslev & Combes, Comm. Math. Phys. 22 (1971) complex rotation:
18
Other applications random gauge field CDW pinning
Chen et al.,PRB 54, (1996) Fokker-Planck equation Nelson and Shnerb, PRE 58, 1383 (1998) Dirac Fermion in random gauge field Mudry et al. PRL 80, 4257 (1998) PT symmetry Bender and Boettcher, PRL 80, 5243 (1998) complex spectrum PT symmetry breaking Interactions Lehrer and Nelson, cond-mat/ Boson crystal and delocalization
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.