Download presentation
Presentation is loading. Please wait.
Published byScot Doyle Modified over 6 years ago
1
Immunoinformatics Approach for Non-Small Cell Lung Cancer
Mohammad M.Tarek Armed Forces College of Medicine (AFCM) Cairo, Egypt.
2
Big Data! “it’s not about the data” Gary king
An estimated number of 158,080 deaths are expected to occur in 2016 1 out of 4 of deaths to be caused by cancer. (NSCLC) it accounts for about 84% of lung cancer cases. The Surveillance, Epidemiology, and End Results (SEER) Cancer Treatment Centers of America® (CTCA)
3
Immunotherapy Using the power of Immune system to fight Cancer
Ancient Egyptians and Immunotherapy. William Coley’s Experiments. Immune checkpoint modulators “nivolumab, ipilimumab and pembrolizumab” Immune cell therapy – CAR-T Therapeutic Antibodies rituximab , MPDL3280A in melanoma sipuleucel-T, for castration-resistant prostate cancer.
4
Bioinformatics of Antigen Prediction GEO – NIH cell lines Mining
X antigen family member 1b (XAGE-1b) was shown to be typically overexpressed in adenocarcinoma cases of NSCLC. XAGE-1b is considered as one of the most immunogenic antigens and a promising target for lung adenocarcinoma immunotherapy
5
Sequence analysis The antigenic protein sequence of 9kD cancer/testis-associated protein XAGE-1b protein was retrieved from NCBI Database, in order to study the antigenicity and solvent accessible regions which permit's potential vaccine targets to recognize active sites against NSCLC
6
Homology modeling and quality estimation
Template PDB Acc. No. Sequence Identity Sequence similarity GMQE QMEAN4 Residues % in favorite regions A 4IFD 42.00 0.40 0.39 -1.18 87.9% B 3U1K 38.30 0.38 0.31 -6.25 91.9% C 2AE8 32.39 0.36 0.a58 -3.89 73.2% D 4JTU 32.20 0.48 -5.21 84.2% E 1E3P 30.00 0.37 0.10 -4.62 88.5% F EJ43 28.57 0.34 0.26 -2.22 90.0% G 2ZKQ 28.17 0.35 0.58 -3.85 90.0% H 4PBN 25.00 0.44 -3.44 88.7%
7
Modeling – Solvent Mapping
8
B-cell Epitopes Developers have applied this tool to a variety of proteins to predict B-cell epitopes and results came out with 75% accuracy No. Chain Start End Peptide No. of residues Score 1 A 13 21 VGILHLGSR 9 0.67 2 40 52 CKSCISQTPGINL 0.66 3 59 69 KSCISQTPGHC 11 0.544 No. Residues Score 1 A:C40, A:K41, A:S42, A:I44, A:S45, A:Q46, A:T47, A:P48, A:G49 A:I50, A:N51, A:L52 13 0.66 2 A:V13, A:G14, A:I15, A:L16, A:H17, A:L18, A:G19, A:S20, A:R21, A:K23 10 0.652 3 A:I63, A:P64, A:K65, A:E66, A:E67, A:H68 6 0.644 4 A:K59, A:V60, A:K61 0.6 5 A:I25, A:I27, A:S31 0.589
9
Hydrophobicity antigenicity and solvent accessible regions which permit's potential vaccine targets to recognize active sites against NSCLC.
10
Proper Vaccine Design
11
T-HELPER CELL EPITOPES
Length From To Score/Percentile Rank Restricted Allele SPKKKNQQL 9 3 11 0.2 HLA-B*08:01 GVKVKIIPK 57 65 0.3 HLA-A*30:01 ILHLGSRQK 15 23 0.35 HLA-A*03:01 RQKKIRIQL 21 29 0.45 HLA-A*31:01 RSQCATWKV 30 38 2.9 HLA-B*57:01 KIRIQLRSQ 24 32 5.2 HLA-B*07:02 GSGVKVKII 55 63 6.7 HLA-B*58:01 KSCISQTPG 41 49 13 HLA-B*15:01 KKKNQQLKV 5 HLA-B*51:01 VKVKIIPKE 58 66 HLA-B*53:01
12
T-CYTOTOXIC CELL EPITOPES
Core Epitope Length From To IC50 Restricted Allele Peptide IRIQLRSQC 9 25 33 5.91 HLA-DRB1*12:01 RQKKIRIQLRSQCAT ILHLGSRQK 15 23 6.26 HLA-DRB5*01:01 KVGILHLGSRQKKIR INLDLGSGV 50 58 54.38 HLA-DRB1*13:02 GINLDLGSGVKVKII LRSQCATWK 29 37 84.35 HLA-DRB1*11:01 IRIQLRSQCATWKVI LDLGSGVKV 52 60 100.79 HLA-DRB1*07:01 RIQLRSQCA 26 34 210.77 HLA-DRB1*04:05 KIRIQLRSQCATWKV GILHLGSRQ 14 22 329.88 HLA-DRB1*09:01 LKVGILHLGSRQKKI QLKVGILHL 10 18 421.45 HLA-DRB1*15:01 KNQQLKVGILHLGSR KKIRIQLRS 31 698.29 HLA-DRB1*08:02 CATWKVICKSCISQT
14
Population Coverage
15
Docking and Drug Design Schrodinger, LLC.
16
NGS Data Analysis- Coding variants classifier
immune epitopes generated due to mutations, from Next Generation Sequencing data Model evaluation ANN (Multilayer perceptron) Accuracy 93.6% Sensitivity Precision 16
17
Thank You!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.