Download presentation
Presentation is loading. Please wait.
1
Adavanced Numerical Computation 2008, AM NDHU
Radial Basis Function Supervised Learning Adavanced Numerical Computation 2008, AM NDHU
2
Adavanced Numerical Computation 2008, AM NDHU
Neural Networks A neural network (NN), in the case of artificial neurons called artificial neural network (ANN) or simulated neural network (SNN), is an interconnected group of natural or artificial neurons that uses a mathematical or computational model for information processing based on a connectionistic approach to computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network. In more practical terms neural networks are non-linear statistical data modeling or decision making tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data. However, the paradigm of neural networks - i.e., implicit, not explicit , learning is stressed - seems more to correspond to some kind of natural intelligence than to the traditional symbol-based Artificial Intelligence, which would stress, instead, rule-based learning. Adavanced Numerical Computation 2008, AM NDHU
3
Adavanced Numerical Computation 2008, AM NDHU
|Neural_Networks-A Comprehensive Foundation -Simon&Haykin.pdf Bernard Widrow Home Adavanced Numerical Computation 2008, AM NDHU
4
Function Approximation
High-dimensional nonlinear function approximation Linear combination of basis functions Projective basis function Radial basis function Adavanced Numerical Computation 2008, AM NDHU
5
Function approximation
Data oriented function approximation Paired data sampled from an unknown target function f : Rd R (x[t], y[t]),t=1,…,N Desired target (output) Predictor (input) Adavanced Numerical Computation 2008, AM NDHU
6
Adavanced Numerical Computation 2008, AM NDHU
7
Perceptron Projective basis function
1 tanh y x a Adavanced Numerical Computation 2008, AM NDHU
8
Adavanced Numerical Computation 2008, AM NDHU
Post-tanh projection Posterior Weight Linear projection Post-nonlinear function Adavanced Numerical Computation 2008, AM NDHU
9
Multiple (Multi-layer) perceptrons
b1 tanh r1 1 b2 a1 tanh r2 a2 x bM ……. rM aM tanh rM+1 1 Adavanced Numerical Computation 2008, AM NDHU
10
MLP (multilayer perceptrons)
Weight sum of post-tanh projections Adavanced Numerical Computation 2008, AM NDHU
11
Supervised learning of multilayer perceptrons
Applications Supervised learning of multilayer perceptrons Adavanced Numerical Computation 2008, AM NDHU
12
Adavanced Numerical Computation 2008, AM NDHU
13
Adavanced Numerical Computation 2008, AM NDHU
14
Adavanced Numerical Computation 2008, AM NDHU
15
Adavanced Numerical Computation 2008, AM NDHU
16
Adavanced Numerical Computation 2008, AM NDHU
17
Adavanced Numerical Computation 2008, AM NDHU
18
Adavanced Numerical Computation 2008, AM NDHU
19
Adavanced Numerical Computation 2008, AM NDHU
20
Adavanced Numerical Computation 2008, AM NDHU
21
Adavanced Numerical Computation 2008, AM NDHU
22
Adavanced Numerical Computation 2008, AM NDHU
23
Adavanced Numerical Computation 2008, AM NDHU
24
Adavanced Numerical Computation 2008, AM NDHU
25
Adavanced Numerical Computation 2008, AM NDHU
Radial basis function 1 r b tanh y x a w x exp Adavanced Numerical Computation 2008, AM NDHU
26
Adavanced Numerical Computation 2008, AM NDHU
RBF Network function Adavanced Numerical Computation 2008, AM NDHU
27
Adavanced Numerical Computation 2008, AM NDHU
RBF Network y exp exp exp exp .. .. x Adavanced Numerical Computation 2008, AM NDHU
28
Why Post-Nonlinear Projection?
Why projection? Linear projection versus Radial basis function Why hyper-tangent Hyper-tangent function versus exponential function Why Euclidean distance? Connections between exponential functions and hyper-tangent functions Adavanced Numerical Computation 2008, AM NDHU
29
Adavanced Numerical Computation 2008, AM NDHU
Neural Networks Books Papers Neural networks of radial basis functions reference Adavanced Numerical Computation 2008, AM NDHU
30
Adavanced Numerical Computation 2008, AM NDHU
Network parameter a vector of d elements scalar Adavanced Numerical Computation 2008, AM NDHU
31
Adavanced Numerical Computation 2008, AM NDHU
Supervised Learning Derive optimal built-in parameters in for approximating the target function underlying given paired training data Quantitative Criterion Mean square approximating error Adavanced Numerical Computation 2008, AM NDHU
32
Adavanced Numerical Computation 2008, AM NDHU
Training and Testing Both training and testing data are oriented from the same target function Supervised learning is given training data and aimed to derive optimal built-in parameters The derived built-in parameters is verified with testing data Adavanced Numerical Computation 2008, AM NDHU
33
Adavanced Numerical Computation 2008, AM NDHU
Training set Desired output MLP Network output Adavanced Numerical Computation 2008, AM NDHU
34
Adavanced Numerical Computation 2008, AM NDHU
Training set Desired output RBF Network output Adavanced Numerical Computation 2008, AM NDHU
35
Adavanced Numerical Computation 2008, AM NDHU
Mean square errors Adavanced Numerical Computation 2008, AM NDHU
36
Unconstrained optimization
Adavanced Numerical Computation 2008, AM NDHU
37
Revisit hyper-plane Fitting
Adavanced Numerical Computation 2008, AM NDHU
38
Adavanced Numerical Computation 2008, AM NDHU
Sampling Blue : training data Red : testing data Adavanced Numerical Computation 2008, AM NDHU
39
Adavanced Numerical Computation 2008, AM NDHU
Fitting Fitting blue training data The performance is reflected by the mean square testing error mean square training error mean square testing error Adavanced Numerical Computation 2008, AM NDHU
40
Verification of Generalization
Training phase Given a training set, Testing phase Verify F(x;opt) by a testing set, which is assumed unknown during training phase Both training and testing sets are assumed oriented from the same generating process Adavanced Numerical Computation 2008, AM NDHU
41
Performance evaluation
Mean square error of training Substitute each predictor in a training set to a network function Determine the mean square error of approximating the desired target by the network output Mean square error of testing indicates generalization capability of a network function Adavanced Numerical Computation 2008, AM NDHU
42
Mean square training error
Adavanced Numerical Computation 2008, AM NDHU
43
Mean square testing error
Adavanced Numerical Computation 2008, AM NDHU
44
Adavanced Numerical Computation 2008, AM NDHU
Prediction testing data S_test ={(x[t],y[t]} training data S ={(x[t],y[t]} y[t] + x[t] Learning determine y_hat sum - Mean square testing Error Adavanced Numerical Computation 2008, AM NDHU
45
Adavanced Numerical Computation 2008, AM NDHU
Over-fitting Extremely low training error but high testing error Over-fitting implies false generalization Adavanced Numerical Computation 2008, AM NDHU
46
Adavanced Numerical Computation 2008, AM NDHU
Table lookup Over-fitting S: training set Adavanced Numerical Computation 2008, AM NDHU
47
Adavanced Numerical Computation 2008, AM NDHU
MATLAB programming RBF(Radial Basis Function) Gradient descent method Conjugate gradient method Adavanced Numerical Computation 2008, AM NDHU
48
Adavanced Numerical Computation 2008, AM NDHU
Data structure Flow charts Algorithm K-means Gradient descent method Conjugate gradient method Adavanced Numerical Computation 2008, AM NDHU
49
Adavanced Numerical Computation 2008, AM NDHU
Reference painless-conjugate-gradient.pdf Nonlinear conjugate gradient method - Wikipedia, the free encyclopedia Adavanced Numerical Computation 2008, AM NDHU
50
Adavanced Numerical Computation 2008, AM NDHU
51
Adavanced Numerical Computation 2008, AM NDHU
Network function Adavanced Numerical Computation 2008, AM NDHU
52
Adavanced Numerical Computation 2008, AM NDHU
Network parameter Adavanced Numerical Computation 2008, AM NDHU
53
Adavanced Numerical Computation 2008, AM NDHU
Data Structure Net Net.u : receptive field Mxd Net.si : variance Mx1 Net.w : posterior weights M+1 Net.M : number of hidden units Net.d : data dimension Adavanced Numerical Computation 2008, AM NDHU
54
Adavanced Numerical Computation 2008, AM NDHU
LM_iniNet_RBF.m Adavanced Numerical Computation 2008, AM NDHU
55
Adavanced Numerical Computation 2008, AM NDHU
Input & output x: Nxd N: data size d: data dimension y: Nx1 Net demo_LM_RBF.m Adavanced Numerical Computation 2008, AM NDHU
56
Adavanced Numerical Computation 2008, AM NDHU
RBF y exp x .. Adavanced Numerical Computation 2008, AM NDHU
57
RBF network Evaluation
y=0 function y=eva_f(Net,x) EXIT m=1:M Adavanced Numerical Computation 2008, AM NDHU
58
Adavanced Numerical Computation 2008, AM NDHU
Cross distances X: Nxd u: Mxd Adavanced Numerical Computation 2008, AM NDHU
59
Adavanced Numerical Computation 2008, AM NDHU
square error Function2 function E= DC(Net,x,y) Approximating error e=y-yhat Mean square error mean(e.^2) E=0 E=E/N exit i=1:N Adavanced Numerical Computation 2008, AM NDHU
60
Adavanced Numerical Computation 2008, AM NDHU
Derivative derivative.m gtheta=[ gu gsi gw ] % gtheta : N x (Md+2M+1) % gu : N x Md % gsi : N x M % gw : N x ( M+1) Adavanced Numerical Computation 2008, AM NDHU
61
Adavanced Numerical Computation 2008, AM NDHU
Since t runs from 1 to N and θ contains (Md+2M+1) elements Gtheta is a matrix with N rows and (Md+2M+1) columns gtheta : N x (Md+2M+1) Adavanced Numerical Computation 2008, AM NDHU
62
Adavanced Numerical Computation 2008, AM NDHU
gtheta : N x (Md+2M+1) gu : N x Md Adavanced Numerical Computation 2008, AM NDHU
63
Adavanced Numerical Computation 2008, AM NDHU
gu=[ ] exit t=1:N B=[ ] gu=[gu;B] m=1:M Adavanced Numerical Computation 2008, AM NDHU
64
Adavanced Numerical Computation 2008, AM NDHU
65
Adavanced Numerical Computation 2008, AM NDHU
gtheta : N x (Md+2M+1) gsi : N x M Adavanced Numerical Computation 2008, AM NDHU
66
Adavanced Numerical Computation 2008, AM NDHU
gtheta : N x (Md+2M+1) gw : N x (M+1) Adavanced Numerical Computation 2008, AM NDHU
67
Adavanced Numerical Computation 2008, AM NDHU
68
Gradient descent method
Initialize , i=0 and set Calculate Update network parameters If halting condition hold, exit otherwise go to step 2 LM.m Adavanced Numerical Computation 2008, AM NDHU
69
Adavanced Numerical Computation 2008, AM NDHU
Flow Chart i=0; guess ~ halting condition Adavanced Numerical Computation 2008, AM NDHU
70
Adavanced Numerical Computation 2008, AM NDHU
Calculate delta_theta Update theta Adavanced Numerical Computation 2008, AM NDHU
71
Adavanced Numerical Computation 2008, AM NDHU
Project Learning RBF or MLP by the LM method Derivation Matlab codes Testing Adavanced Numerical Computation 2008, AM NDHU
72
Adavanced Numerical Computation 2008, AM NDHU
Derivative Adavanced Numerical Computation 2008, AM NDHU
73
Adavanced Numerical Computation 2008, AM NDHU
Derivative Adavanced Numerical Computation 2008, AM NDHU
74
Adavanced Numerical Computation 2008, AM NDHU
Matlab coding Main program Matlab Functions Calculate Adavanced Numerical Computation 2008, AM NDHU
75
Adavanced Numerical Computation 2008, AM NDHU
Matlab coding Matlab functions Calculate Adavanced Numerical Computation 2008, AM NDHU
76
Adavanced Numerical Computation 2008, AM NDHU
Matlab coding Matlab functions Calculate Adavanced Numerical Computation 2008, AM NDHU
77
Adavanced Numerical Computation 2008, AM NDHU
Test Give two examples to test your matlab codes for learning RBF or MLP networks by the gradient descent method Adavanced Numerical Computation 2008, AM NDHU
78
Adavanced Numerical Computation 2008, AM NDHU
Evaluation GD_iniNet Form u Form si Form w RBF evaluation Calculation of mse Determine gtheta gu gsi gw Update theta Delta_theta Gradient Halting condition Executable Good performance 2D function approximation Adavanced Numerical Computation 2008, AM NDHU
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.