Presentation is loading. Please wait.

Presentation is loading. Please wait.

Adavanced Numerical Computation 2008, AM NDHU

Similar presentations


Presentation on theme: "Adavanced Numerical Computation 2008, AM NDHU"— Presentation transcript:

1 Adavanced Numerical Computation 2008, AM NDHU
Radial Basis Function Supervised Learning Adavanced Numerical Computation 2008, AM NDHU

2 Adavanced Numerical Computation 2008, AM NDHU
Neural Networks A neural network (NN), in the case of artificial neurons called artificial neural network (ANN) or simulated neural network (SNN), is an interconnected group of natural or artificial neurons that uses a mathematical or computational model for information processing based on a connectionistic approach to computation. In most cases an ANN is an adaptive system that changes its structure based on external or internal information that flows through the network. In more practical terms neural networks are non-linear statistical data modeling or decision making tools. They can be used to model complex relationships between inputs and outputs or to find patterns in data. However, the paradigm of neural networks - i.e., implicit, not explicit , learning is stressed - seems more to correspond to some kind of natural intelligence than to the traditional symbol-based Artificial Intelligence, which would stress, instead, rule-based learning. Adavanced Numerical Computation 2008, AM NDHU

3 Adavanced Numerical Computation 2008, AM NDHU
|Neural_Networks-A Comprehensive Foundation -Simon&Haykin.pdf Bernard Widrow Home Adavanced Numerical Computation 2008, AM NDHU

4 Function Approximation
High-dimensional nonlinear function approximation Linear combination of basis functions Projective basis function Radial basis function Adavanced Numerical Computation 2008, AM NDHU

5 Function approximation
Data oriented function approximation Paired data sampled from an unknown target function f : Rd R (x[t], y[t]),t=1,…,N Desired target (output) Predictor (input) Adavanced Numerical Computation 2008, AM NDHU

6 Adavanced Numerical Computation 2008, AM NDHU

7 Perceptron Projective basis function
1 tanh y x a Adavanced Numerical Computation 2008, AM NDHU

8 Adavanced Numerical Computation 2008, AM NDHU
Post-tanh projection Posterior Weight Linear projection Post-nonlinear function Adavanced Numerical Computation 2008, AM NDHU

9 Multiple (Multi-layer) perceptrons
b1 tanh r1 1 b2 a1 tanh r2 a2 x bM ……. rM aM tanh rM+1 1 Adavanced Numerical Computation 2008, AM NDHU

10 MLP (multilayer perceptrons)
Weight sum of post-tanh projections Adavanced Numerical Computation 2008, AM NDHU

11 Supervised learning of multilayer perceptrons
Applications Supervised learning of multilayer perceptrons Adavanced Numerical Computation 2008, AM NDHU

12 Adavanced Numerical Computation 2008, AM NDHU

13 Adavanced Numerical Computation 2008, AM NDHU

14 Adavanced Numerical Computation 2008, AM NDHU

15 Adavanced Numerical Computation 2008, AM NDHU

16 Adavanced Numerical Computation 2008, AM NDHU

17 Adavanced Numerical Computation 2008, AM NDHU

18 Adavanced Numerical Computation 2008, AM NDHU

19 Adavanced Numerical Computation 2008, AM NDHU

20 Adavanced Numerical Computation 2008, AM NDHU

21 Adavanced Numerical Computation 2008, AM NDHU

22 Adavanced Numerical Computation 2008, AM NDHU

23 Adavanced Numerical Computation 2008, AM NDHU

24 Adavanced Numerical Computation 2008, AM NDHU

25 Adavanced Numerical Computation 2008, AM NDHU
Radial basis function 1 r b tanh y x a w x exp Adavanced Numerical Computation 2008, AM NDHU

26 Adavanced Numerical Computation 2008, AM NDHU
RBF Network function Adavanced Numerical Computation 2008, AM NDHU

27 Adavanced Numerical Computation 2008, AM NDHU
RBF Network y exp exp exp exp .. .. x Adavanced Numerical Computation 2008, AM NDHU

28 Why Post-Nonlinear Projection?
Why projection? Linear projection versus Radial basis function Why hyper-tangent Hyper-tangent function versus exponential function Why Euclidean distance? Connections between exponential functions and hyper-tangent functions Adavanced Numerical Computation 2008, AM NDHU

29 Adavanced Numerical Computation 2008, AM NDHU
Neural Networks Books Papers Neural networks of radial basis functions reference Adavanced Numerical Computation 2008, AM NDHU

30 Adavanced Numerical Computation 2008, AM NDHU
Network parameter a vector of d elements scalar Adavanced Numerical Computation 2008, AM NDHU

31 Adavanced Numerical Computation 2008, AM NDHU
Supervised Learning Derive optimal built-in parameters in  for approximating the target function underlying given paired training data Quantitative Criterion Mean square approximating error Adavanced Numerical Computation 2008, AM NDHU

32 Adavanced Numerical Computation 2008, AM NDHU
Training and Testing Both training and testing data are oriented from the same target function Supervised learning is given training data and aimed to derive optimal built-in parameters The derived built-in parameters is verified with testing data Adavanced Numerical Computation 2008, AM NDHU

33 Adavanced Numerical Computation 2008, AM NDHU
Training set Desired output MLP Network output Adavanced Numerical Computation 2008, AM NDHU

34 Adavanced Numerical Computation 2008, AM NDHU
Training set Desired output RBF Network output Adavanced Numerical Computation 2008, AM NDHU

35 Adavanced Numerical Computation 2008, AM NDHU
Mean square errors Adavanced Numerical Computation 2008, AM NDHU

36 Unconstrained optimization
Adavanced Numerical Computation 2008, AM NDHU

37 Revisit hyper-plane Fitting
Adavanced Numerical Computation 2008, AM NDHU

38 Adavanced Numerical Computation 2008, AM NDHU
Sampling Blue : training data Red : testing data Adavanced Numerical Computation 2008, AM NDHU

39 Adavanced Numerical Computation 2008, AM NDHU
Fitting Fitting blue training data The performance is reflected by the mean square testing error mean square training error mean square testing error Adavanced Numerical Computation 2008, AM NDHU

40 Verification of Generalization
Training phase Given a training set, Testing phase Verify F(x;opt) by a testing set, which is assumed unknown during training phase Both training and testing sets are assumed oriented from the same generating process Adavanced Numerical Computation 2008, AM NDHU

41 Performance evaluation
Mean square error of training Substitute each predictor in a training set to a network function Determine the mean square error of approximating the desired target by the network output Mean square error of testing indicates generalization capability of a network function Adavanced Numerical Computation 2008, AM NDHU

42 Mean square training error
Adavanced Numerical Computation 2008, AM NDHU

43 Mean square testing error
Adavanced Numerical Computation 2008, AM NDHU

44 Adavanced Numerical Computation 2008, AM NDHU
Prediction testing data S_test ={(x[t],y[t]} training data S ={(x[t],y[t]} y[t] + x[t] Learning determine y_hat sum - Mean square testing Error Adavanced Numerical Computation 2008, AM NDHU

45 Adavanced Numerical Computation 2008, AM NDHU
Over-fitting Extremely low training error but high testing error Over-fitting implies false generalization Adavanced Numerical Computation 2008, AM NDHU

46 Adavanced Numerical Computation 2008, AM NDHU
Table lookup Over-fitting S: training set Adavanced Numerical Computation 2008, AM NDHU

47 Adavanced Numerical Computation 2008, AM NDHU
MATLAB programming RBF(Radial Basis Function) Gradient descent method Conjugate gradient method Adavanced Numerical Computation 2008, AM NDHU

48 Adavanced Numerical Computation 2008, AM NDHU
Data structure Flow charts Algorithm K-means Gradient descent method Conjugate gradient method Adavanced Numerical Computation 2008, AM NDHU

49 Adavanced Numerical Computation 2008, AM NDHU
Reference painless-conjugate-gradient.pdf Nonlinear conjugate gradient method - Wikipedia, the free encyclopedia Adavanced Numerical Computation 2008, AM NDHU

50 Adavanced Numerical Computation 2008, AM NDHU

51 Adavanced Numerical Computation 2008, AM NDHU
Network function Adavanced Numerical Computation 2008, AM NDHU

52 Adavanced Numerical Computation 2008, AM NDHU
Network parameter Adavanced Numerical Computation 2008, AM NDHU

53 Adavanced Numerical Computation 2008, AM NDHU
Data Structure Net Net.u : receptive field Mxd Net.si : variance Mx1 Net.w : posterior weights M+1 Net.M : number of hidden units Net.d : data dimension Adavanced Numerical Computation 2008, AM NDHU

54 Adavanced Numerical Computation 2008, AM NDHU
LM_iniNet_RBF.m Adavanced Numerical Computation 2008, AM NDHU

55 Adavanced Numerical Computation 2008, AM NDHU
Input & output x: Nxd N: data size d: data dimension y: Nx1 Net demo_LM_RBF.m Adavanced Numerical Computation 2008, AM NDHU

56 Adavanced Numerical Computation 2008, AM NDHU
RBF y exp x .. Adavanced Numerical Computation 2008, AM NDHU

57 RBF network Evaluation
y=0 function y=eva_f(Net,x) EXIT m=1:M Adavanced Numerical Computation 2008, AM NDHU

58 Adavanced Numerical Computation 2008, AM NDHU
Cross distances X: Nxd u: Mxd Adavanced Numerical Computation 2008, AM NDHU

59 Adavanced Numerical Computation 2008, AM NDHU
square error Function2 function E= DC(Net,x,y) Approximating error e=y-yhat Mean square error mean(e.^2) E=0 E=E/N exit i=1:N Adavanced Numerical Computation 2008, AM NDHU

60 Adavanced Numerical Computation 2008, AM NDHU
Derivative derivative.m gtheta=[ gu gsi gw ] % gtheta : N x (Md+2M+1) % gu : N x Md % gsi : N x M % gw : N x ( M+1) Adavanced Numerical Computation 2008, AM NDHU

61 Adavanced Numerical Computation 2008, AM NDHU
Since t runs from 1 to N and θ contains (Md+2M+1) elements Gtheta is a matrix with N rows and (Md+2M+1) columns gtheta : N x (Md+2M+1) Adavanced Numerical Computation 2008, AM NDHU

62 Adavanced Numerical Computation 2008, AM NDHU
gtheta : N x (Md+2M+1) gu : N x Md Adavanced Numerical Computation 2008, AM NDHU

63 Adavanced Numerical Computation 2008, AM NDHU
gu=[ ] exit t=1:N B=[ ] gu=[gu;B] m=1:M Adavanced Numerical Computation 2008, AM NDHU

64 Adavanced Numerical Computation 2008, AM NDHU

65 Adavanced Numerical Computation 2008, AM NDHU
gtheta : N x (Md+2M+1) gsi : N x M Adavanced Numerical Computation 2008, AM NDHU

66 Adavanced Numerical Computation 2008, AM NDHU
gtheta : N x (Md+2M+1) gw : N x (M+1) Adavanced Numerical Computation 2008, AM NDHU

67 Adavanced Numerical Computation 2008, AM NDHU

68 Gradient descent method
Initialize , i=0 and set Calculate Update network parameters If halting condition hold, exit otherwise go to step 2 LM.m Adavanced Numerical Computation 2008, AM NDHU

69 Adavanced Numerical Computation 2008, AM NDHU
Flow Chart i=0; guess ~ halting condition Adavanced Numerical Computation 2008, AM NDHU

70 Adavanced Numerical Computation 2008, AM NDHU
Calculate delta_theta Update theta Adavanced Numerical Computation 2008, AM NDHU

71 Adavanced Numerical Computation 2008, AM NDHU
Project Learning RBF or MLP by the LM method Derivation Matlab codes Testing Adavanced Numerical Computation 2008, AM NDHU

72 Adavanced Numerical Computation 2008, AM NDHU
Derivative Adavanced Numerical Computation 2008, AM NDHU

73 Adavanced Numerical Computation 2008, AM NDHU
Derivative Adavanced Numerical Computation 2008, AM NDHU

74 Adavanced Numerical Computation 2008, AM NDHU
Matlab coding Main program Matlab Functions Calculate Adavanced Numerical Computation 2008, AM NDHU

75 Adavanced Numerical Computation 2008, AM NDHU
Matlab coding Matlab functions Calculate Adavanced Numerical Computation 2008, AM NDHU

76 Adavanced Numerical Computation 2008, AM NDHU
Matlab coding Matlab functions Calculate Adavanced Numerical Computation 2008, AM NDHU

77 Adavanced Numerical Computation 2008, AM NDHU
Test Give two examples to test your matlab codes for learning RBF or MLP networks by the gradient descent method Adavanced Numerical Computation 2008, AM NDHU

78 Adavanced Numerical Computation 2008, AM NDHU
Evaluation GD_iniNet Form u Form si Form w RBF evaluation Calculation of mse Determine gtheta gu gsi gw Update theta Delta_theta Gradient Halting condition Executable Good performance 2D function approximation Adavanced Numerical Computation 2008, AM NDHU


Download ppt "Adavanced Numerical Computation 2008, AM NDHU"

Similar presentations


Ads by Google