Download presentation
Presentation is loading. Please wait.
1
The Prokaryotes: Domains Bacteria and Archaea
Chapter 11 The Prokaryotes: Domains Bacteria and Archaea
2
The Prokaryotes
3
Domain Bacteria Proteobacteria
From the mythical Greek god Proteus, who could assume many shapes Gram-negative Chemoheterotrophic
4
The Alphaproteobacteria
Pelagibacter ubique Discovered by FISH technique 20% of prokaryotes in oceans 0.5% of all prokaryotes 1354 genes
5
The Alphaproteobacteria
Human pathogens Bartonella B. henselae: Cat-scratch disease Brucella: Brucellosis Ehrlichia: Tickborne
6
The Alphaproteobacteria
Obligate intracellular parasites Ehrlichia: Tickborne, ehrlichiosis Rickettsia: Arthropod-borne, spotted fevers R. prowazekii: Epidemic typhus R. typhi: Endemic murine typhus R. rickettsii: Rocky Mountain spotted fever
7
Rickettsias Figure 11.1
8
The Alphaproteobacteria
Wolbachia: Live in insects and other animals Applications p. 307
9
Wolbachia Applications p. 307
10
The Alphaproteobacteria
Have prosthecae Caulobacter: Stalked bacteria found in lakes Hyphomicrobium: Budding bacteria found in lakes Figures 11.2b, 11.3
11
The Alphaproteobacteria
Plant pathogen Agrobacterium: Insert a plasmid into plant cells, inducing a tumor Figure 9.19
12
The Alphaproteobacteria
Chemoautotrophic Oxidize nitrogen for energy Fix CO2 Nitrobacter: NH3 NO2– Nitrosomonas: NO2– NO3–
13
The Alphaproteobacteria
Nitrogen-fixing bacteria Azospirillum Grow in soil, using nutrients excreted by plants Fix nitrogen Rhizobium Fix nitrogen in the roots of plants Figure 27.5
14
The Alphaproteobacteria
Produce acetic acid from ethanol Acetobacter Gluconobacter
16
The Betaproteobacteria
Thiobacillus Chemoautotrophic; oxidize sulfur: H2S SO42– Sphaerotilus Chemoheterotophic; form sheaths Figure 11.5
17
The Betaproteobacteria
Neisseria Chemoheterotrophic; cocci N. meningitidis N. gonorrhoeae Figure 11.6
18
The Betaproteobacteria
Spirillum Chemoheterotrophic; helical Figure 11.4
19
The Betaproteobacteria
Bordetella Chemoheterotrophic; rods B. pertussis Burkholderia Nosocomial infections Figure 24.7
20
The Betaproteobacteria
Zoogloea Slimy masses in aerobic sewage-treatment processes Figure 27.20
21
The Gammaproteobacteria
Pseudomonadales Pseudomonas Opportunistic pathogens Metabolically diverse Polar flagella Figure 11.7
22
The Gammaproteobacteria
Pseudomonadales Moraxella Conjunctivitis Azotobacter and Azomonas Nitrogen fixing
23
The Gammaproteobacteria
Legionellales Legionella Found in streams, warm-water pipes, cooling towers L. pneumophilia Coxiella Q fever transmitted via aerosols or milk Figure 24.14b
24
The Gammaproteobacteria
Vibrionales Found in coastal water Vibrio cholerae causes cholera V. parahaemolyticus causes gastroenteritis Figure 11.8
25
The Gammaproteobacteria
Enterobacteriales (enterics) Peritrichous flagella; facultatively anaerobic Enterobacter Erwinia Escherichia Klebsiella Proteus Salmonella Serratia Shigella Yersinia
26
The Gammaproteobacteria
Figure 11.9a
27
The Gammaproteobacteria
Figure 11.9b
28
The Gammaproteobacteria
Pasteurellales Pasteurella Cause pneumonia and septicemia Haemophilus Require X (heme) and V (NAD+, NADP+) factors
29
The Gammaproteobacteria
Beggiatoa Chemoautotrophic; oxidize H2S to S0 for energy Francisella Chemoheterotrophic; tularemia
30
The Deltaproteobacteria
Bdellovibrio Prey on other bacteria Figure 11.10
31
The Deltaproteobacteria
Desulfovibrionales Use S instead of O2 as final electron acceptor
32
The Deltaproteobacteria
Myxococcales Gliding Cells aggregate to form myxospores Figure 11.11
33
The Epsilonproteobacteria
Campylobacter One polar flagellum Gastroenteritis
34
The Epsilonproteobacteria
Helicobacter Multiple flagella Peptic ulcers Stomach cancer Figure 11.12
35
Phototrophic Oxygenic photosynthesis Anoxygenic photosynthesis
light 2H2O + CO2 (CH2O) + H2O + O2 light 2H2S + CO2 (CH2O) + H2O + 2S0
36
Oxygenic Photosynthetic Bacteria
Cyanobacteria Gliding motility Fix nitrogen
37
Cyanobacteria Figure 11.13
38
Anoxygenic Photosynthetic Bacteria
Purple sulfur Purple nonsulfur Green sulfur Green nonsulfur
39
Purple Sulfur Bacteria
Figure 11.14
40
Firmicutes Low G + C Gram-positive
41
Clostridiales Clostridium Endospore-producing Obligate anaerobes
Figure 11.15
42
Clostridiales Epulopiscium Figure 11.16
43
Bacillales Bacillus Endospore–producing rods Figure 11.17b
44
Bacillales Staphylococcus Cocci Figure 11.18
45
Lactobacillales Generally aerotolerant anaerobes; lack an electron-transport chain Lactobacillus Streptococcus Enterococcus Listeria [Insert Figure 11.19] Figure 11.19
46
Mycoplasmatales Wall-less; pleomorphic 0.1 - 0.24 µm M. pneumoniae
Figure 11.20a, b
47
Actinobacteria High G + C Gram-positive
48
Actinobacteria Actinomyces Corynebacterium Frankia Gardnerella
Mycobacterium Nocardia Propionibacterium Streptomyces
49
Streptomyces Figure 11.21
50
Streptomyces Figure 11.21
51
Actinomyces Figure 11.22
52
Planctomycetes Gemmata obscuriglobus
Double internal membrane around DNA Figure 11.23
53
Chlamydias Chlamydia trachomatis Chlamydophila pneumoniae
STI, urethritis Chlamydophila pneumoniae Chlamydophila psittaci Psittacosis Figure 11.24b
54
Life Cycle of the Chlamydias
Figure 11.24a
55
Spirochetes Borrelia Leptospira Treponema Figure 11.25
56
Bacteroidetes Anaerobic
Bacteroides are found in the mouth and large intestine Cytophaga: Cellulose-degrading in soil
57
Fusobacteria Fusobacterium Are found in the mouth
May be involved in dental diseases Figure 11.26
58
Domain Archaea Extremophiles Hyperthermophiles Methanogens
Pyrodictium Sulfolobus Methanogens Methanobacterium Extreme halophiles Halobacterium
59
Archaea Figure 11.27
60
Microbial Diversity Bacteria size range Thiomargarita (750 µm)
Nanobacteria (0.02 µm) in rocks Figure 11.28
61
Microbial Diversity PCR indicates up to 10,000 bacteria per gram of soil. Many bacteria have not been identified because they Haven't been cultured Need special nutrients Are a part of complex food chains requiring the products of other bacteria Need to be cultured to understand their metabolism and ecological role
62
Q&A Bacteria are single-celled organisms that must absorb their nutrients by simple diffusion. The dimensions of T. namibiensis are several hundred times larger than most bacteria, much too large for simple diffusion to operate. How does the bacterium solve this problem?
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.