Download presentation
Presentation is loading. Please wait.
Published byDrusilla Marshall Modified over 6 years ago
1
LIDAR experiment In-situ laser-induced condensation in free atmosphere
M. Petrarca Collaboration LNF/INFN-University of Geneva GAP 8/05/2013 LNF-INFN Massimo Petrarca
2
Overview It has been shown that is possible to trigger the formation of water droplets by intense laser beam in the filamentation regime while propagating in a controlled atmosphere with saturated and unsaturated relative humidity Background: No IR laser, no filament Cloud chamber sub-saturated RH=(70-90)% T=20C Diagnostic: Green laser scattering from suspended particle P. Rohwetter et al., Nature Photonics 4, 451 (2010) Y. Petit, Appl. Phys. Letters, 98, (2011) S. Henin et al, Nature Communication, 2,456, 2011 8/05/2013 LNF-INFN Massimo Petrarca
3
100TW laser induced particle generation in controlled atmosphere (Dresden 2011)
2.3J,30fs RH=(75-95)% T=(8-12)C Cloud chamber L=7 propagation in air Ti:Sa laser chain l0=800nm E=3J FWHM=30fs P=100TW Beam size ~ 100cm2 Gas analyzer Grimm Aerosol particle detection: Grimm 32 size classes: mm Nanocheck =(25-300)nm laser in laser out gas probe condensation chambre Grimm 8/05/2013 LNF-INFN Massimo Petrarca
4
Result Dresden 2011 Threshold Contribution grows with
number of filaments Contribution of photon bath A relevant increase of the nano-particle signal growing faster than linearly with power and number of filaments, is evidenced. This contribution comes from the “bath” M. Petrarca et al., Appl. Phys. Lett. 99, (2011) 8/05/2013 LNF-INFN Massimo Petrarca
5
LIDAR experiment proposal to study the scaling up in power and energy of the effect in real uncontrolled atmosphere SPARC_LAB/LNF-INFN 8/05/2013 LNF-INFN Massimo Petrarca
6
Experiment set-up and strategy
1) Pump: Flame laser beam into atmosphere: 2) Probe: UV +Green beams in LIDAR configuration Ozone + Aerosols detection 3) White-light FLAME induced Lidar signal 4) Quantify total PUMP laser effect FLAME bunker , Floor: underground 8/05/2013 LNF-INFN Massimo Petrarca
7
8/05/2013 LNF-INFN Massimo Petrarca
8
8/05/2013 LNF-INFN Massimo Petrarca
9
Detection system Photomultiplierts (PMT) Optical beam line
Lidar signal input 8/05/2013 LNF-INFN Massimo Petrarca
10
PXI: acquisition hardware 1.2MB each file at 10Hz
6 curves saved in each file FLAME control room 8/05/2013 LNF-INFN Massimo Petrarca
11
LIDAR signals [V] [ms] LIDAR signal-Green beam LIDAR signal-Green beam
clouds clouds LIDAR signal -UV beam LIDAR signal -UV beam [ms] 8/05/2013 LNF-INFN Massimo Petrarca
12
LIDAR signals [V] [ms] LIDAR signal-Green beam clouds clouds
LIDAR signal -UV beam [ms] 8/05/2013 LNF-INFN Massimo Petrarca
13
Results and Outlook Future
Data analysis still under in progress….strong back ground signal (aerosols) to be disregarded opportunely, signal is present Future Collinear configuration of the PUMP+PROBES with beam collimation Sweeping time delay PUMP vs PROBES Particle generation optimization by adaptive optics Optimization (adaptive optics) of white light and its characterization FLAME converted SHG (800400)nm: 400nm beam as PUMP ; nm + 800nm as PUMPS 8/05/2013 LNF-INFN Massimo Petrarca
14
Participants University of Geneva: M. P., S. Henin, M. Gosal, N. Berti, J. Chagas, J. Kasparian, Prof. J.P. Wolf LNF-INFN: M. P., G. Gatti, M. Anania, G. Di Pirro, R. Sorchetti, L. Cacciotti, M. Ferrario, A. Ghigo 8/05/2013 LNF-INFN Massimo Petrarca
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.