Presentation is loading. Please wait.

Presentation is loading. Please wait.

Warm-up (5 feet – 2 feet)day ≥ 50 feet (3 feet)day ≥ 50 feet

Similar presentations


Presentation on theme: "Warm-up (5 feet – 2 feet)day ≥ 50 feet (3 feet)day ≥ 50 feet"— Presentation transcript:

1 Warm-up (5 feet – 2 feet)day ≥ 50 feet (3 feet)day ≥ 50 feet
_____ _____ 3 feet feet days ≥ 16 2/3

2 Agenda Homework Review 5-2 Right Triangles
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

3 5-1 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

4 5-1 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

5 5-1 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

6 10-3 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

7 10-3 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

8 10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

9 10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

10 10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

11 5-2 Right Triangles Theorem 5-5 LL (Leg - Leg)
If the legs of one right triangle are congruent to the corresponding legs of another right triangle, then the triangles are congruent. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

12 HA (Hypotenuse - Angle)
If the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and corresponding acute angle of another right triangle, then the two triangles are congruent. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

13 LA (Leg - Angle) Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 If the leg and an acute angle of one right triangle are congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.

14 HL (Hypotenuse -Leg) Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.

15 Answers Ahead

16 5-2 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

17 5-1Review Lesson 5-1, Page 772

18 Lesson 5-1 Answers 1. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

19 Lesson 5-1 Answers 2. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

20 Lesson 5-1 Answers 3. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

21 Lesson 5-1 Answers 4. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

22 Lesson 5-1 Answers 5. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

23 Lesson 5-1 Answers 6. is an angle bisector
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

24 Lesson 5-1 Answers 7. Will always intersect inside.
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 Will always intersect inside.

25 Lesson 5-1 Answers 8. No such triangle, will always intersect inside
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 No such triangle, will always intersect inside

26 Lesson 5-1 Answers 9. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001

27 Homework 5-2 Study Guide and Practice


Download ppt "Warm-up (5 feet – 2 feet)day ≥ 50 feet (3 feet)day ≥ 50 feet"

Similar presentations


Ads by Google