Download presentation
Presentation is loading. Please wait.
Published bySara McCormick Modified over 6 years ago
1
Warm-up (5 feet – 2 feet)day ≥ 50 feet (3 feet)day ≥ 50 feet
_____ _____ 3 feet feet days ≥ 16 2/3
2
Agenda Homework Review 5-2 Right Triangles
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
3
5-1 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
4
5-1 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
5
5-1 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
6
10-3 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
7
10-3 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
8
10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
9
10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
10
10-3 Practice Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
11
5-2 Right Triangles Theorem 5-5 LL (Leg - Leg)
If the legs of one right triangle are congruent to the corresponding legs of another right triangle, then the triangles are congruent. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
12
HA (Hypotenuse - Angle)
If the hypotenuse and an acute angle of one right triangle are congruent to the hypotenuse and corresponding acute angle of another right triangle, then the two triangles are congruent. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
13
LA (Leg - Angle) Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 If the leg and an acute angle of one right triangle are congruent to the corresponding leg and acute angle of another right triangle, then the triangles are congruent.
14
HL (Hypotenuse -Leg) Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 If the hypotenuse and a leg of one right triangle are congruent to the hypotenuse and corresponding leg of another right triangle, then the triangles are congruent.
15
Answers Ahead
16
5-2 Study Guide Flatland – 0 to 3 dimensions – Euclidean Geometry
Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
17
5-1Review Lesson 5-1, Page 772
18
Lesson 5-1 Answers 1. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
19
Lesson 5-1 Answers 2. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
20
Lesson 5-1 Answers 3. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
21
Lesson 5-1 Answers 4. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
22
Lesson 5-1 Answers 5. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
23
Lesson 5-1 Answers 6. is an angle bisector
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
24
Lesson 5-1 Answers 7. Will always intersect inside.
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 Will always intersect inside.
25
Lesson 5-1 Answers 8. No such triangle, will always intersect inside
Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001 No such triangle, will always intersect inside
26
Lesson 5-1 Answers 9. Flatland – 0 to 3 dimensions – Euclidean Geometry Edwin A Abbott – Headmaster 1884 Flatterland – Euclidean & Non-Euclidean, Physics Ian Stewart 2001
27
Homework 5-2 Study Guide and Practice
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.