Presentation is loading. Please wait.

Presentation is loading. Please wait.

Flux Limits for Ultra-High Energy Neutrinos

Similar presentations


Presentation on theme: "Flux Limits for Ultra-High Energy Neutrinos"— Presentation transcript:

1 Flux Limits for Ultra-High Energy Neutrinos
Physics Radio pulse, Ev>1022 eV results status Olaf Scholten KVI, Groningen August 2011 ICRC, Beijing

2 Principle of the measurement
Small flux ≈ 1 / km2 / sr / century above 1020 eV! Lunar area ≈ 107 km2 Cosmic ray or neutrino Detection: Westerbork/LOFAR antennas 107 km2 100MHz Radio waves Proefje door Tjalling Nijboer en Martin Stokroos: Statische electriciteit van wrijfstok is hoorbaar via radio ontvanger op de middengolf. Principle of the measurement August 2011 ICRC, Beijing

3 Askaryan effect: Coherent Cherenkov emission
~10 cm ~2 m Cosmic ray shower Wave front Recent evidence: Askaryan effect in CR airshowers K.D. de Vries, AstroParticle Physics & arXiv: H. Schoorlemmer for PAO, ARENA 2010 Important magnitudes: Leading cloud of electrons, v  c Typical size of order 10cm Coherent Čerenkov for ν  2-5 GHz cos θc =1/n , θc=56o for ∞ shower length Length of shower, L  2-3 m strong angular spreading for ν  100 MHz

4 Cosmic rays, Position on Moon
Calculations for Ecr= eV 3 GHz 100 MHz 100 MHz 3 GHz With decreasing ν increasing probability: ∫ over surface Moon Detection probability  ν-3 rim inside O.S. et al, Astropart.Phys. 26 (2006) 219

5 Results WSRT observations
No pulse of 240kJy seen in 46.7 h data 90% confidence limit on neutrino flux O.S. et al, PRL 103(2009)191301 Buitink, et al., A&A 521, A47 (2010).

6 NuMoon Experiment @ LOFAR
New generation of radio-telescopes, many (3000) simple wire antennas Total collecting area  0.25 km2 Cover whole moon, Sensitivity 25 times better than WSRT. Band: MHz Multiple tied-array beams August 2011 ICRC, Beijing

7 Nano-second pulse finding
Determine power over threshold in sliding window of length N Aim: Determine optimum window length N Threshold: set to 1 accidental count per minute Correcting for atmospheric dispersion, with accuracy ΔSTEC TECU Strength of pulse added to background in units of noise power August 2011 ICRC, Beijing Optimum: N=10-15

8 Beam shape depends on station layout
Station layout: 4 km x 4 km Beam profile φ=210o φ=120o Δφ Side-lobes suppressed Max: Δφ= φ=120o Min: Δφ= φ=210o Conclusion: need fewer than 50 beams to cover visible Lunar surface August 2011 ICRC, Beijing

9 Background noise Radio stations: narrow-band RFI  can easily be filtered out Human activity: Broad-band RFI  potential problem ! Data: 8 half stations for 10 seconds direction Virgo A Amplitude spectrum Gaussian  No problems expected Pulsed (broad-band )RFI suppressed further by anti-coincidence filter between the different radio beams August 2011 ICRC, Beijing

10 Neutrinos Conclusion: With LOFAR able to
LOFAR, 1 week Conclusion: With LOFAR able to reach sensitivity level W-B estimate

11 Conclusions NuMoon Future: NuMoon @ WSRT: New limit for E > 1023 eV
LOFAR: Sensitive to W-B flux Future: SKA Extend limit to lower E Improve Flux limit NuMoon NuMoon collaboration: O.S., Stijn Buitink, Heino Falcke , Clancy James, Maaijke Mevius, Ben Stappers, Kalpana Singh, Richard Strom , Sander ter Veen August 2011 ICRC, Beijing

12 Cosmic rays Pierre Auger model-independent limit
Pierre Auger extrapolation S. ter Veen, et al. , Phys. Rev. D 82, (2010). August 2011 ICRC, Beijing


Download ppt "Flux Limits for Ultra-High Energy Neutrinos"

Similar presentations


Ads by Google