Download presentation
Presentation is loading. Please wait.
Published byJoan Gilbert Modified over 6 years ago
1
Distributed Information Systems (CSCI 5533) Presentation ID: 19
Clustering Algorithm Submitted to: Dr. Liaw, Morris Submitted by: Kumar, Manoj
2
Algorithm 5.3 BEA Input: AA : attribute affinity matrix
Output: CA : clustered affinity matrix Begin { initialize; AA is an nxn matrix} CA(*,1)← AA(*,1) CA(*,2)← AA(*,2) index ← 3 while index ≤ n do {choose the “best” location for attribute AAindex }
3
begin for i from 1 to index – 1 by 1 do calculate cont (Ai-1, Aindex, Ai) end-for calculate cont (Aindex-1, Aindex, Aindex+1) loc ← placement given by maximum cont value For j from index to loc by -1 do CA(*,j)← CA(*,j-1)
4
CA(*,loc)← AA(*,index) index ← index + 1 end-while Order the rows according to the relative ordering of columns end. {BEA}
5
AM= =
6
bond(Ax,Ay) = AM= A1 A2 ……. Ai-1 Ai Aj Aj+1…….. An AM’ AM’’
7
AMold = AM’ + AM’’ + bond(Ai-1,Ai) +. bond(Ai,Aj) +bond(Aj,Ai) +
AMold = AM’ + AM’’ + bond(Ai-1,Ai) + bond(Ai,Aj) +bond(Aj,Ai) + bond(Aj,Aj+1) = + + 2bond(Ai,Aj)
8
AMnew = AM’ + AM’’ + bond(Ai,Ak) + bond(Ak,Ai) + bond(Ak,Aj)
+ bond(Aj,Ak) AMnew = AM’ + AM’’ + 2bond(Ai,Ak) bond(Ak,Aj) Cont(Ai,Ak,Aj) = AMnew – Amold = 2bond(Ai,Ak) + 2bond(Ak,Aj) bond(Ai,Aj)
16
Questions ??
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.