Download presentation
Presentation is loading. Please wait.
1
PRODUCTION OF 100MT DISTILLED MONOGLYCERIDE (DMG)
SAJJAD KHUDHUR ABBAS Ceo , Founder & Head of SHacademy Chemical Engineering , Al-Muthanna University, Iraq Oil & Gas Safety and Health Professional – OSHACADEMY Trainer of Trainers (TOT) - Canadian Center of Human Development
2
PROCESS BACKGROUND
3
Formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase.
Monoglyceride (MG) - chemical compound a.k.a monoacylglycerol Industrial chemical and biological processes. General Information Act as emulsifiers - mix ingredients that would not otherwise blend well
5
PROCESS DESCRIPTION
7
Monoglyceride synthesis
Glycerolysis procedure is more economical - fats are cheaper and less glycerol is required. Fats and fatty acids are insoluble in glycerol - high temperatures are required to force the reaction to proceed. On production scale, direct esterification and interesterification can be done continuously or batchwise.
8
Flow chart
9
Physical and Chemical Properties
10
DIGLYCERIDES (DISTEARIN) White to pale yellow Wax-like solid
COMPONENTS Appearance Formula MW (g/mol) Tb (K) Tf ΔfHo298 (kJ/mol) GLYCEROL Clear viscous liquid Little or no odor C3H5(OH)3 444 472 MONOGLYCERIDES (MONOSTEARIN) Colorless Odorless Sweet-taste Flaky powder C21H4204 940.09 424.9 DIGLYCERIDES (DISTEARIN) White to pale yellow Wax-like solid Mild fatty odour C39H76O5 454.8
11
LEVEL 1 SELECTION OF PROCESSING MODE
12
Proposed Process Batch Continuous Operating 24 hr/day Production is continuous Total batch time 3-5 hours 7 batches/day production 99% purity % purity 98% purity Annual cost is higher Annual cost is lower Lower maintenance cost Higher specific manufacturing and operating cost Higher maintenance cost
13
LEVEL 2 SELECTION OF INPUT-OUTPUT STRUCTURE
14
Reaction Information Reaction 1 Reaction 2 Rate constant 350oF 460oF
k1 0.291 1.566 k2 0.163 0.220
15
Input-Output Structure
16
Glycerol Selectivity r1=k1CGCFA(1) r2=k2CMCFA(2)
Base on consecutive reaction Glycerol − 𝑑𝐶 𝐺 𝑑𝑡 =− 𝑟 𝐺 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 (3) Fatty acid − 𝑑𝐶 𝐹𝐴 𝑑𝑡 =− 𝑟 𝐹𝐴 = 𝑟 1 + 𝑟 2 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (4) Monoglyceride 𝑑𝐶 𝑀 𝑑𝑡 = 𝑟 𝑀 = 𝑟 1 − 𝑟 2 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 − 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (5) Water 𝑑𝐶 𝑊 𝑑𝑡 = 𝑟 𝑊 = 𝑟 1 + 𝑟 2 = 𝑘 1 𝐶 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (6) Diglyceride 𝑑𝐶 𝐷 𝑑𝑡 = 𝑟 𝐷 = 𝑟 2 = 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (7)
17
𝐶 𝐺 = 𝐶 𝐺𝑜 (1− 𝑋 𝐺 )(8) − 𝑑𝐶 𝐺 𝑑𝑡 = 𝑑 (𝐶 𝐺𝑜 (1− 𝑋 𝐺 )) 𝑑𝑡 = 𝐶 𝐺𝑜 𝑑 𝑋 𝐺 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 𝑑 𝑋 𝐺 𝑑𝑡 = 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 (9) − 𝑑𝐶 𝐹𝐴 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 (1− 𝑋 𝐺 ) 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (10) 𝑑𝐶 𝑀 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 (1− 𝑋 𝐺 ) 𝐶 𝐹𝐴 − 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (11) 𝑑𝐶 𝑊 𝑑𝑡 = 𝑘 1 𝐶 𝐺𝑜 (1− 𝑋 𝐺 ) 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (12) 𝑑𝐶 𝐷 𝑑𝑡 = 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 (13)
18
By applying chain rule;
− 𝑑𝐶 𝐺 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 (14) − 𝑑𝐶 𝐹𝐴 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 + 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (15) 𝑑𝐶 𝑀 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 − 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 − 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (16) 𝑑𝐶 𝑊 𝑑 𝑋 𝐺 = 𝑘 1 𝐶 𝐺𝑜 1− 𝑋 𝐺 𝐶 𝐹𝐴 + 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝐶 𝐺𝑜 + 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (17) 𝑑𝐶 𝐷 𝑑 𝑋 𝐺 = 𝑘 2 𝐶 𝑀 𝐶 𝐹𝐴 𝑘 1 1− 𝑋 𝐺 𝐶 𝐹𝐴 = 𝑘 2 𝐶 𝑀 𝑘 1 1− 𝑋 𝐺 (18)
20
Economic Potential of Level 2
21
LEVEL 3: REACTOR AND RECYCLE STREAMS
22
Generally, there will be input for the process and output from the process. Here we can define what are the related variables or input-output that present in this process. Feed stream: In this process, the feed raw material is assumed already pure, so no need to purify the feed streams. Excess reactant: fatty acid is fed as an excess reactant and is supplied in liquid form. Recycle and purge: There are recycle stream from glycerol and fatty acid but there are no purges from the process.
23
Recycle Stream
25
Adiabatic Temperature
Energy balances Simplified; Where;
26
Where from the process,
27
𝑇 𝑎 = 𝑇 𝑚 − 𝑗−1 𝑁 𝑛 𝑗 ∆𝐻 𝑟𝑗 𝑚 𝑖−1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖
𝑗=1 𝑁 𝑛 𝑗 ∆𝐻 𝑟𝑗 𝑚 = 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟1 ° + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟2 ° + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝐹 𝐹𝐺 𝑋 𝐺 𝑐 𝑝 𝑊 − 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝 𝐺 − 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 ( 𝑇 𝑚 −25)
28
𝑖=1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 = 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐺 + 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐹𝐴 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝑀 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝐷 + 𝐹 𝐹𝐺 𝑋 𝐺 𝑐 𝑝𝑊 𝑖=1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 = 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐺 + 𝐹 𝐹𝐺 1− 𝑋 𝐺 𝑐 𝑝𝐹𝐴 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝑀 + 𝐹 𝐹𝐺 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝐷 + 𝐹 𝐹𝐺 𝑋 𝐺 𝑐 𝑝𝑊 𝑇 𝑎 = 𝑇 𝑚 − 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟1 ° + 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟2 ° + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝑋 𝐺 𝑐 𝑝 𝑊 − 1− 𝑋 𝐺 𝑐 𝑝 𝐺 − 1− 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 ( 𝑇 𝑚 −25) 1− 𝑋 𝐺 𝑐 𝑝𝐺 + 1− 𝑋 𝐺 𝑐 𝑝𝐹𝐴 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝𝐷 + 𝑋 𝐺 𝑐 𝑝𝑊
29
XG Ta(K) 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
31
Isothermal heat load can be obtained from
𝑄= 𝑗=1 𝑁 𝑛 𝑗 ∆𝐻 𝑟𝑗 𝑚 + 𝑖=1 𝑀 𝑃 𝑖 𝑐 𝑝𝑖 ( 𝑇 𝑚 −25) 𝑄= 𝑃 𝑀 𝑆 𝑀 𝑋 𝐺 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟1 ° + 𝑆 𝑀 𝑋 𝐺 ∆𝐻 𝑟2 ° + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝑀 + 𝑆 𝑀 𝑋 𝐺 𝑐 𝑝 𝐷 + 𝑋 𝐺 𝑐 𝑝 𝑊 − 1− 𝑋 𝐺 𝑐 𝑝 𝐺 − 1− 𝑋 𝐺 𝑐 𝑝 𝐹𝐴 𝑇 𝑚 −25
32
Determination of Reactors Volumes Cost
Operation conditions: Reactor Temperature = 255°C Pressure, PT = bar R = kJ.K/kmole
33
For CSTR;
35
The annual reactor cost;
37
LEVEL 4 SYNTHESIS OF CHEMICAL SEPARATION SYSTEM
38
Distillation Column
39
Sizing Distillation Column
Determination of Minimum Number of Stages Minimum and Actual Reflux Ratio 𝑁 𝑚𝑖𝑛 = 𝑙𝑜𝑔 𝑑 𝐿𝐾 𝑑 𝐻𝐾 𝑏 𝐻𝐾 𝑏 𝐿𝐾 𝑙𝑜𝑔 𝛼 𝑚 𝑅 𝑚𝑖𝑛 = 𝑙𝑜𝑔 𝑥 𝐿𝐻𝑑 𝑑 𝑋𝐻𝐾𝑑 − 𝛼 𝐿𝐾,𝐻𝐾 ( 𝑋 𝐻𝐾𝑑 𝑋 𝐿𝐾 ) 𝛼 𝐿𝐾,𝐻𝐾 −1
40
Theoretical and Actual Number of Stages
The theoretical number of stages, N is calculated by using Gilliland correlation: Calculated column diameter D = m Column Height = m 𝑵− 𝑵 𝑴𝑰𝑵 𝑵+𝟏 =𝟏−𝒆𝒙𝒑 𝟏+𝟓𝟒.𝟒𝒙 𝟏+𝟏𝟏𝟕.𝟐𝒙 𝒙−𝟏 𝒙
41
Calculation for Distillation Column
Component Feed Distillate Bottom Molar flow Mol fraction Distearin 0.1648 0.0166 0.0009 0.2092 Glycerin 0.2408 0.9973 2.3643 0.0359 Monostearin 0.4309 0.0051 0.0003 0.5476 Fatty Acid 0.1635 0.0260 0.0015 0.2073 Total 1.0000
42
Fenske ( Nmin) Parameter/Component Glycerol (LK) Monostearin (HK)
Distillate Flow Rate, di 17.81 0.01 Bottom Flow Rate,bi 2.36 36.10 (αlk,hk)N (αlk,hk)1 Nmin 14
43
Gilliland correlation Calculated column diameter D = 4
Gilliland correlation Calculated column diameter D = m Column Height = m Rmin 1.75 Reflux Ratio, R 2.1 X 0.1129 Y N 28
44
Cost of Distillation Column
Where; A = capacity or size parameter of the equipment K1, K2, K3 = values used in the correlation 𝑙𝑜𝑔 10 𝐶 𝑝 𝑜 = 𝐾 1 + 𝐾 2 𝑙𝑜𝑔 10 𝐴 + 𝐾 3 [ 𝑙𝑜𝑔 10 𝐴 ] 2
45
EP4 = EP3 - 𝐶 𝑝 𝑜 (distillation column)
47
LEVEL 5 HEAT INTEGRATION
48
Heat Exchanger Network
Stream Type Tsupply (K) Ttarget (K) Total Heat Capacity Flowrate, FCp (KW/K) Enthalpy Change, ∆H (KW) H1 Hot 498.15 373.15 8.76 H2 328.15 2.37 C1 Cold 298.15 0.834 25.011 C2 393.15 5.494 Total Q available = KW Total Q that must be absorbed = KW
49
Temperature Intervals
Shifted temperature for the hot and cold stream in Pinch Technology Stream Type Tsupply(K) Ttarget(K) TsS TsT ∆T ∆H FCp (KW/K) H1 Hot 498.15 373.15 493.15 368.15 -125 8.756 H2 328.15 323.15 -170 2.370 C1 Cold 298.15 30 25.011 0.834 C2 393.15 65 5.494
50
Temperature Intervals
51
Heat transfer to and from utilities for each temperature interval
52
CHAPTER 3 SIMULATION
54
CHAPTER 4 MATERIAL AND ENERGY BALANCE
55
Streams Manual Calculation (kg/hr) Simulation Error Percentage (%) 1 0.00 2 3 0.22 4 5 6 7 8 9 4.71 10 11 15.834 12.79 12 4.62
56
Streams Manual Calculation (kg/hr) Simulation Error Percentage (%)
13 0.58 14 1.29 15 16 0.08 17 0.44 18 0.65 19 20 21 22 0.06 23 14.75 24 1.48
57
THANK YOU
58
Please follow me / SAJJAD KHUDHUR ABBAS
Thanks for Watching Please follow me / SAJJAD KHUDHUR ABBAS
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.