Presentation is loading. Please wait.

Presentation is loading. Please wait.

Tidal Stripping of Star Close to Massive Black Holes

Similar presentations


Presentation on theme: "Tidal Stripping of Star Close to Massive Black Holes"— Presentation transcript:

1 Tidal Stripping of Star Close to Massive Black Holes
Lixin (Jane) Dai (KIPAC/Stanford) + Roger Blandford Peter Eggleton Jane Dai

2 Black Hole Spin Probe Accretion Disc Jet Close Stars
Iron Lines (Reynolds & Nowak 03) Multi-temperature black body method (e.g. Yuan, Quataert & Narayan 04; Gou et al 11) Jet Complicated models (Blandford & Znajek 77) Close Stars tidal events Jane Dai

3 Tidal Disruption Unbound / eccentric / parabolic Pros: bright
Cons: short, hard to model with high precision for spin Might be able to detect fastly spinning holes e.g. Komossa 99, Zauderer 11, Bloom 11, Gezari 09, 12, van Velsen 11 Jane Dai

4 Tidal Stripping Circular, equatorial orbit Cons: Not as luminous
Pros: long, easier to model with precision for a/M Dai, Blandford & Eggleton 2011a Dai & Blandford 2011b Jane Dai

5 Close Binary Systems Newtonian framework (e.g. Hjellming & Webbink 87, Soberman et al. 97): - Cataclysmic variables - Low Mass X-ray Binaries SMBH-star binary: Relativistic -> Spin! Jane Dai

6 Relativistic Model No accurate enough GR framework
-Hameury et. al. 1994 GR Modifications near ISCO: Gravitational Radiation Power: 20% Roche Volume: 40% Mass Accretion Rate: 50% Dai, Blandford & Eggleton 2011a Dai & Blandford 2011b Jane Dai

7 Newtonian Roche Volume
(Frank et al 2002) L1 L2 (Dai & Blandford 2011b) Jane Dai

8 Relativistic Roche Volume
(Dai & Blandford 2011b) 0.368 0.456 0.683 0.503 Riemann -> local tidal tensor. Evaluate volume within critical equi-potential Jane Dai

9 Comparison 20-40% difference! non-rotating stars co-rotating stars
Fishbone 73 /Hameury 94: sphere, no spin, no stellar rotation 20-40% difference! non-rotating stars (Dai & Blandford 2011b) co-rotating stars Jane Dai

10 Star: Adiabatic Evolution
- Local entropy conserved (tdyn<< ttransfer << tKelvin ) - Orbital period ~-1/2 (Dai & Blandford 2011a) Jane Dai

11 Relativistic P-M (Dai & Blandford 2011b) Jane Dai

12 Relativistic Roche Evolution
Lower main-sequence star 107 M Schwarzschild hole (Dai & Blandford 2011b) Newtonian Stable Relativistic Jane Dai

13 RE J1034+396 XMM-Newton z=0.042 Seyfert Lbol ~ 1044 erg s-1
1 hr QPO with 20 cycles ~7% sinusoidal profile (Gierlinski et al. 2008) Jane Dai

14 Simulated Hotspot Emission
Dai & Blandford 2011b Jane Dai

15 X-ray AGN QPOs XMM-Newton: ~100 AGN, only 1 QPO (RE J1034)
(Gonzalez-Martin & Vaughan 12) Chandra: Not good for timing analysis due to pile-up Suzaku / RXTE: ~100 AGN each, unevenly sampled data Jane Dai

16 Suzaku IC4329a Jane Dai

17 Take-aways Why are we interested in tidal stripping?
-“QPOs” from AGN as probe of SMBH spin. How is the model different from X-ray binaries? -Different stellar evolution. -Rigorous GR Observations? - RE J - Search Suzaku/RXTE archives for QPOs with P~0.1-10hr. Jane Dai

18 Dai, Blandford & Eggleton 2011a Dai & Blandford 2011b
Jane Dai

19 Jane Dai

20 Jane Dai

21 Stars near SMBH MBH ~ 4106 M (Ghez et al. 2008) Rg~ 20 light sec
ISCO ~ light min Closest observed stellar orbit ~ 10 light hr ~180 Rg - Tidal radius RstarMstar-1/3  Mstar0.5 Jane Dai

22 Orbits Rapidly Circularize
(Peters 1964) Jane Dai

23 Simulated Hotspot Emission
Dai & Blandford 2011b Jane Dai

24 Pre-Roche: Gravitational Inspirals
(Finn & Thorne 2000) - Gravitational radiation dominates - Need PPN (Parametrized Post-Newtonian) corrections to torque - Torque = - dL/dt Jane Dai

25 Relativistic Correction Tau
0.00 1.65 1.00 (Dai & Blandford 2011b) Jane Dai

26 Roche radii for various stars
(Dai & Blandford 2011a) Jane Dai

27 Relativistic Roche Volume
(Dai & Blandford 2011b) Jane Dai

28 Stellar adiabatic evolution
Local entropy S(m) conserved (tdyn<< ttransfer << tKelvin ) Perfect gas: S/N~Cv ln(P/), =5/3 EOS: dP/dm = - Gm / 4pr4 dr/dm = 1/ 4pr2 New boundary conditions Jane Dai

29 Upper and Lower main-sequence stars
Zero age main sequence star models with metalicity 0.01 (Peter Eggleton’s simulation) Jane Dai

30 Red Giants Jane Dai

31 White dwarfs R(m) ~(m/ Mch)-1/3 (1 - (m/Mch)4/3)1/2, Mch = 1.459 M
Jane Dai

32 Brown dwarfs P~ 1013 rconstant S(m) Jane Dai

33 Planets Solid planets: density no change
Liquid planets: radius constant Jane Dai

34 Newtonian Roche Evolution
Stellar parameter :  = ln/lnm > 6 dynamical instability star moves out <0 star moves in Stellar orbit evolution: - Sun, upper main sequence, giants spiral in and then out; - Lower main sequence, white dwarf, brown dwarf, liquid planet spiral out; - Solid planet stays on the same orbit. Jane Dai

35 Newtonian P-M (Dai & Blandford 2011b) Jane Dai Upper main sequence
Earth Sun Jupiter Red giant Upper main sequence White Dwarf Brown dwarf Lower main sequence (Dai & Blandford 2011b) Jane Dai

36 X-ray observations Maximum efficiency: a ~ m PR ~ PISCO RE J1034: 1hr
Liberal mass loss ISCO ->Spin Wind Equatorial viewing Luminosity ~ D4 D~2? RE J1034: 1hr - BH: Msun , - Star: M-dwarf-Sun - Not enough power - How to fix that? Jane Dai

37 Probe of Spin Hot Spot Light Curve P-Pdot Analysis:
10,000 years observation Similar to Pulsars Jane Dai

38 Vision? Coincidence? Time-traveller?
“You should work on SMBH tidal problems. It is nothing now but will become something big within two years.” - Roger Blandford (2009) Vision? Coincidence? Time-traveller? Jane Dai

39 Future work Inclined or elliptical stellar orbit?
Interactions with other stars? (Exo-planets) GW-EM coupled signals Jets? 3D relativistic dynamical simulations Jane Dai

40 Jane Dai

41 Jane Dai

42 Post-Roche Evolution After mass transfer orbit expands
P ~ m-h/2 ~ m-1.1 for low mass star t-tR=4100M6-2/3 P2.7[(P/PR)3.6-1] yr; [~ 10000yr] Conservative Mass loss ~ -m7.9 eventually till ttransfer > tKelvin Dynamical complications Holding pattern? Interactions, drag Jane Dai 21 v 2009 CFA

43 Other observations 17 min IR QPO frm SgrA* (Genzel)
GRB burst tidal disruption 12yr period in OJ287?? Binary black holes??? (Lehto & Valtonen) LISA harbingers Discover incipient EMRI, coalescence Predictable evolution with degree position! Seek electromagnetic signal in phase with ~10-9 power eg LSST. Jane Dai 21 v 2009 CFA


Download ppt "Tidal Stripping of Star Close to Massive Black Holes"

Similar presentations


Ads by Google