Download presentation
Presentation is loading. Please wait.
Published byEdwina Stokes Modified over 6 years ago
1
Tidal Stripping of Star Close to Massive Black Holes
Lixin (Jane) Dai (KIPAC/Stanford) + Roger Blandford Peter Eggleton Jane Dai
2
Black Hole Spin Probe Accretion Disc Jet Close Stars
Iron Lines (Reynolds & Nowak 03) Multi-temperature black body method (e.g. Yuan, Quataert & Narayan 04; Gou et al 11) Jet Complicated models (Blandford & Znajek 77) Close Stars tidal events Jane Dai
3
Tidal Disruption Unbound / eccentric / parabolic Pros: bright
Cons: short, hard to model with high precision for spin Might be able to detect fastly spinning holes e.g. Komossa 99, Zauderer 11, Bloom 11, Gezari 09, 12, van Velsen 11 Jane Dai
4
Tidal Stripping Circular, equatorial orbit Cons: Not as luminous
Pros: long, easier to model with precision for a/M Dai, Blandford & Eggleton 2011a Dai & Blandford 2011b Jane Dai
5
Close Binary Systems Newtonian framework (e.g. Hjellming & Webbink 87, Soberman et al. 97): - Cataclysmic variables - Low Mass X-ray Binaries SMBH-star binary: Relativistic -> Spin! Jane Dai
6
Relativistic Model No accurate enough GR framework
-Hameury et. al. 1994 GR Modifications near ISCO: Gravitational Radiation Power: 20% Roche Volume: 40% Mass Accretion Rate: 50% Dai, Blandford & Eggleton 2011a Dai & Blandford 2011b Jane Dai
7
Newtonian Roche Volume
(Frank et al 2002) L1 L2 (Dai & Blandford 2011b) Jane Dai
8
Relativistic Roche Volume
(Dai & Blandford 2011b) 0.368 0.456 0.683 0.503 Riemann -> local tidal tensor. Evaluate volume within critical equi-potential Jane Dai
9
Comparison 20-40% difference! non-rotating stars co-rotating stars
Fishbone 73 /Hameury 94: sphere, no spin, no stellar rotation 20-40% difference! non-rotating stars (Dai & Blandford 2011b) co-rotating stars Jane Dai
10
Star: Adiabatic Evolution
- Local entropy conserved (tdyn<< ttransfer << tKelvin ) - Orbital period ~-1/2 (Dai & Blandford 2011a) Jane Dai
11
Relativistic P-M (Dai & Blandford 2011b) Jane Dai
12
Relativistic Roche Evolution
Lower main-sequence star 107 M Schwarzschild hole (Dai & Blandford 2011b) Newtonian Stable Relativistic Jane Dai
13
RE J1034+396 XMM-Newton z=0.042 Seyfert Lbol ~ 1044 erg s-1
1 hr QPO with 20 cycles ~7% sinusoidal profile (Gierlinski et al. 2008) Jane Dai
14
Simulated Hotspot Emission
Dai & Blandford 2011b Jane Dai
15
X-ray AGN QPOs XMM-Newton: ~100 AGN, only 1 QPO (RE J1034)
(Gonzalez-Martin & Vaughan 12) Chandra: Not good for timing analysis due to pile-up Suzaku / RXTE: ~100 AGN each, unevenly sampled data Jane Dai
16
Suzaku IC4329a Jane Dai
17
Take-aways Why are we interested in tidal stripping?
-“QPOs” from AGN as probe of SMBH spin. How is the model different from X-ray binaries? -Different stellar evolution. -Rigorous GR Observations? - RE J - Search Suzaku/RXTE archives for QPOs with P~0.1-10hr. Jane Dai
18
Dai, Blandford & Eggleton 2011a Dai & Blandford 2011b
Jane Dai
19
Jane Dai
20
Jane Dai
21
Stars near SMBH MBH ~ 4106 M (Ghez et al. 2008) Rg~ 20 light sec
ISCO ~ light min Closest observed stellar orbit ~ 10 light hr ~180 Rg - Tidal radius RstarMstar-1/3 Mstar0.5 Jane Dai
22
Orbits Rapidly Circularize
(Peters 1964) Jane Dai
23
Simulated Hotspot Emission
Dai & Blandford 2011b Jane Dai
24
Pre-Roche: Gravitational Inspirals
(Finn & Thorne 2000) - Gravitational radiation dominates - Need PPN (Parametrized Post-Newtonian) corrections to torque - Torque = - dL/dt Jane Dai
25
Relativistic Correction Tau
0.00 1.65 1.00 (Dai & Blandford 2011b) Jane Dai
26
Roche radii for various stars
(Dai & Blandford 2011a) Jane Dai
27
Relativistic Roche Volume
(Dai & Blandford 2011b) Jane Dai
28
Stellar adiabatic evolution
Local entropy S(m) conserved (tdyn<< ttransfer << tKelvin ) Perfect gas: S/N~Cv ln(P/), =5/3 EOS: dP/dm = - Gm / 4pr4 dr/dm = 1/ 4pr2 New boundary conditions Jane Dai
29
Upper and Lower main-sequence stars
Zero age main sequence star models with metalicity 0.01 (Peter Eggleton’s simulation) Jane Dai
30
Red Giants Jane Dai
31
White dwarfs R(m) ~(m/ Mch)-1/3 (1 - (m/Mch)4/3)1/2, Mch = 1.459 M
Jane Dai
32
Brown dwarfs P~ 1013 rconstant S(m) Jane Dai
33
Planets Solid planets: density no change
Liquid planets: radius constant Jane Dai
34
Newtonian Roche Evolution
Stellar parameter : = ln/lnm > 6 dynamical instability star moves out <0 star moves in Stellar orbit evolution: - Sun, upper main sequence, giants spiral in and then out; - Lower main sequence, white dwarf, brown dwarf, liquid planet spiral out; - Solid planet stays on the same orbit. Jane Dai
35
Newtonian P-M (Dai & Blandford 2011b) Jane Dai Upper main sequence
Earth Sun Jupiter Red giant Upper main sequence White Dwarf Brown dwarf Lower main sequence (Dai & Blandford 2011b) Jane Dai
36
X-ray observations Maximum efficiency: a ~ m PR ~ PISCO RE J1034: 1hr
Liberal mass loss ISCO ->Spin Wind Equatorial viewing Luminosity ~ D4 D~2? RE J1034: 1hr - BH: Msun , - Star: M-dwarf-Sun - Not enough power - How to fix that? Jane Dai
37
Probe of Spin Hot Spot Light Curve P-Pdot Analysis:
10,000 years observation Similar to Pulsars Jane Dai
38
Vision? Coincidence? Time-traveller?
“You should work on SMBH tidal problems. It is nothing now but will become something big within two years.” - Roger Blandford (2009) Vision? Coincidence? Time-traveller? Jane Dai
39
Future work Inclined or elliptical stellar orbit?
Interactions with other stars? (Exo-planets) GW-EM coupled signals Jets? 3D relativistic dynamical simulations Jane Dai
40
Jane Dai
41
Jane Dai
42
Post-Roche Evolution After mass transfer orbit expands
P ~ m-h/2 ~ m-1.1 for low mass star t-tR=4100M6-2/3 P2.7[(P/PR)3.6-1] yr; [~ 10000yr] Conservative Mass loss ~ -m7.9 eventually till ttransfer > tKelvin Dynamical complications Holding pattern? Interactions, drag Jane Dai 21 v 2009 CFA
43
Other observations 17 min IR QPO frm SgrA* (Genzel)
GRB burst tidal disruption 12yr period in OJ287?? Binary black holes??? (Lehto & Valtonen) LISA harbingers Discover incipient EMRI, coalescence Predictable evolution with degree position! Seek electromagnetic signal in phase with ~10-9 power eg LSST. Jane Dai 21 v 2009 CFA
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.