Download presentation
Presentation is loading. Please wait.
Published byEverett Lucas Modified over 6 years ago
1
Sequence motifs, information content, logos, and HMM’s
Morten Nielsen, CBS, BioCentrum, DTU
2
Outline Pattern recognition Multiple alignment and sequence motifs
Regular expression and probabilities Multiple alignment and sequence motifs Weight matrix construction and consensus sequence Sequence weighting Low (pseudo) counts Information content Sequence logos Mutual information Example from the real world HMM’s and profile HMM’s TMHMM (trans-membrane protein) Gene finding Links to HMM packages
3
Pattern recognition ALAKAAAAM ALAKAAAAV GMNERPILV GILGFVFTM TLNAWVKVV
10 peptides from MHCpep database Bind to the MHC complex A*0201 Which of the are most likely to bind? FLLTRILTI WLDQVPFSV TVILGVLLL Regular expression X1[LMIV]2X3…X8[MVL]9 2 and 3 will bind and 1 will not bind Cannot tell if 2 if more likely to bind Truth is that 1 and 2 binds and 1 binds the strongest. 3 does not bind A probabilistic model can capture this! ALAKAAAAM ALAKAAAAV GMNERPILV GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV
4
Multiple alignment and sequence motifs
Core Consensus sequence Weight matrices Problems Sequence weights Low counts MLEFVVEADLPGIKA MLEFVVEFALPGIKA MLEFVVEFDLPGIAA YLQDSDPDSFQD ---GSDTITLPCRMKQFINMWQE ---RNQEERLLADLMQNYDPNLR YDPNLRPAERDSDVVNVSLK------ NVSLKLTLTNLISLNEREEA--- ----EREEALTTNVWIEMQWCDYR WCDYRLRWDPRDYEGLWVLR--- --LWVLRVPSTMVWRPDIVLEN IVLENNVDGVFEVALYCNVL- YCNVLVSPDGCIYWLPPAIF PPAIFRSACSISVTYFPFDW---- ********* FVVEFDLPG Consensus
5
Sequences weighting 1 - Clustering (slow, but accurate)
MLEFVVEADLPGIKA MLEFVVEFALPGIKA MLEFVVEFDLPGIAA YLQDSDPDSFQD ---GSDTITLPCRMKQFINMWQE ---RNQEERLLADLMQNYDPNLR YDPNLRPAERDSDVVNVSLK------ NVSLKLTLTNLISLNEREEA--- ----EREEALTTNVWIEMQWCDYR WCDYRLRWDPRDYEGLWVLR--- --LWVLRVPSTMVWRPDIVLEN IVLENNVDGVFEVALYCNVL- YCNVLVSPDGCIYWLPPAIF PPAIFRSACSISVTYFPFDW---- ********* } Homologous sequences Weight = 1/n (1/3) Consensus sequence YRQELDPLV Previous FVVEFDLPG
6
Sequences weighting 2 - Henikoff & Henikoff (fast)
FVVEADLPG 0.37 FVVEFALPG 0.43 FVVEFDLPG 0.32 YLQDSDPDS 0.59 MKQFINMWQ 0.90 LMQNYDPNL 0.68 PAERDSDVV 0.75 LKLTLTNLI 0.85 VWIEMQWCD 0.84 YRLRWDPRD 0.51 WRPDIVLEN 0.71 VLENNVDGV 0.59 YCNVLVSPD 0.71 FRSACSISV 0.75 waa’ = 1/rs r: Number of different aa in a column s: Number occurrences Normalize S waa= 1 for each column Sequence weight is sum of waa in sequence F: r=7 (FYMLPVW), s=4 w’=1/28, w = 0.055 Y: s=3, w`=1/21, w = 0.073 M,P,W: s=1, w’=1/7, w = 0.218 L,V: s=2, w’=1/14, w = 0.109
7
Low count correction Limited number of data
P1 Limited number of data Poor sampling of sequence space I is not found at position P1. Does this mean that I can never be found at P1? No! Use Blosum matrix to estimate pseudo frequency of I MLEFVVEADLPGIKA MLEFVVEFALPGIKA MLEFVVEFDLPGIAA YLQDSDPDSFQD -GSDTITLPCRMKQFINMWQE -RNQEERLLADLMQNYDPNLR -----YDPNLRPAERDSDVVNVSLK------ NVSLKLTLTNLISLNEREEA--- --EREEALTTNVWIEMQWCDYR WCDYRLRWDPRDYEGLWVLR--- LWVLRVPSTMVWRPDIVLEN IVLENNVDGVFEVALYCNVL- YCNVLVSPDGCIYWLPPAIF PPAIFRSACSISVTYFPFDW---- *********
8
Low count correction using Blosum matrices
Every time for instance L/V is observed, I is also likely to occur Estimate low (pseudo) count correction using this approach As more data are included the pseudo count correction becomes less important Blosum62 substitution frequencies # I L V L V Neff: Number of sequences b: Weight on pseudo count or weight on prior
9
Information content Information and entropy Shannon information (D)
Conserved amino acid regions contain high degree of information (high order == low entropy) Variable amino acid regions contain low degree of information (low order == high entropy) Shannon information (D) D = log2(N) + S pi log2 pi (for proteins N=20, DNA N=4) Conserved residue pA=1, pi<>A=0, D = log2(N) ( = 4.3 for proteins) Variable region pA=0.05, pC=0.05, .., D = 0
10
Sequence logo Height of a column equal to D
MHC class I High information positions Height of a column equal to D Relative height of a letter is pA Highly useful tool to visualize sequence motifs
11
More on logos Information content Shannon, qi = 1/N = 0.05
D = S pi log2 (pi/qi) Shannon, qi = 1/N = 0.05 D = S pi log2 (pi) - S pi log2 (1/N) = log2 N + S pi log2 (pi) Kullback-Leibler, qi = background frequency V/L/A more frequent than for instance C/H/W
12
Mutual information ALWGFFPVA ILKEPVHGV ILGFVFTLT LLFGYPVYV GLSPTVWLS
YMNGTMSQV GILGFVFTL WLSLLVPFV FLPSDFFPS P(G1) = 2/9 = 0.22, .. P(V6) = 4/9 = 0.44,.. P(G1,V6) = 2/9 = 0.22, P(G1)*P(V6) = 8/81 = 0.10 log(0.22/0.10) > 0
13
Mutual information 313 binding peptides 313 random peptides
14
Learning higher order correlation
Neural networks can learn higher order correlations! What does this mean? 0 0 => 0 0 1 => 1 1 0 => 1 1 1 => 0 No linear function can learn this pattern
15
Learning higher order correlation
0 0 => 0; 1 0 => 1 1 1 => 0; 0 1 => 1 X1 X2 X1 X2 W11 W1 W2 W22 W21 W12 h1 hs V1 V2 Solution Has no solution!
16
Take a deep breath Smile to you neighbor
End of first part Take a deep breath Smile to you neighbor
17
How to score a sequences to a probability matrix?
pij describes a motif The probability that a peptide fits the motif is The probability that the peptide fits a random model is The ratio of the two gives the odds The log gives the score
18
Weight matrices Wij = log(pij/qj)
Estimate amino acid frequencies from alignment including sequence weighting and pseudo counts Construct a weight matrix as Wij = log(pij/qj) Here i is a position in the motif, and j an amino acid. qj is the prior (background) frequency for amino acid j. W is a L x 20 matrix, L is motif length Score sequences to weight matrix by looking up and adding L values from matrix
19
Weight matrix 2 What are log-odds scores (Wij = log(pij/qj))?
Does an monthly income of 2000 $ mean that you are rich? Depends on where you live In Denmark no In Argentina yes You must always compare your measured value (pij) to a background (qj) In nature not all amino acids are found equally often PA = 0.070, PW = 0.013 Finding 6% A is hence not significant, but 6% W highly significant
20
Scoring sequences to a weight matrix
A R N D C Q E G H I L K M F P S T W Y V ILYQVPFSV ALPYWNFAT MTAQWWLDA 15.0 -3.4 0.8 Which peptide is most likely to bind? Which peptide second?
21
Example from real life 10 peptides from MHCpep database
Bind to the MHC complex Relevant for immune system recognition Estimate sequence motif and weight matrix Evaluate motif “correctness” on 528 peptides ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV
22
Example (cont.) Raw sequence counting No sequence weighting
ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV Raw sequence counting No sequence weighting No pseudo count Prediction accuracy 0.45
23
Prediction accuracy Pearson correlation 0.45
24
Example (cont.) Sequence weighting No pseudo count
ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV Example (cont.) Sequence weighting No pseudo count Prediction accuracy 0.5
25
Example (cont.) Sequence weighting and pseudo count
ALAKAAAAM ALAKAAAAN ALAKAAAAR ALAKAAAAT ALAKAAAAV GMNERPILT GILGFVFTM TLNAWVKVV KLNEPVLLL AVVPFIVSV Example (cont.) Sequence weighting and pseudo count Prediction accuracy 0.60 Motif found on a large dataset Prediction accuracy 0.79
26
Hidden Markov Models Weight matrices do not deal with insertions and deletions In alignments, this is done in an ad-hoc manner by optimization of the two gap penalties for first gap and gap extension HMM is a natural frame work where insertions/deletions are dealt with explicitly
27
Why hidden? The unfair casion: Loaded die p(6) = 0.5; switch fair to load:0.05; switch load to fair: 0.1 Model generates numbers Do not tell which die was used Alignment (decoding) can give the most probable solution/path (Viterby) FFFFFFLLLLLL Or most probable set of states 0.95 0.9 1:1/6 2:1/6 3:1/6 4:1/6 5:1/6 6:1/6 1:1/10 2:1/10 3:1/10 4:1/10 5:1/10 6:1/2 0.05 0.10 Fair Loaded
28
HMM (a simple example) ACA---ATG TCAACTATC ACAC--AGC AGA---ATC
Example from A. Krogh Core region defines the number of states in the HMM (red) Insertion and deletion statistics are derived from the non-core part of the alignment (black) ACA---ATG TCAACTATC ACAC--AGC AGA---ATC ACCG--ATC Core of alignment
29
HMM construction ACA---ATG TCAACTATC ACAC--AGC AGA---ATC ACCG--ATC
5 matches. A, 2xC, T, G 5 transitions in gap region C out, G out A-C, C-T, T out Out transition 3/5 Stay transition 2/5 ACA---ATG TCAACTATC ACAC--AGC AGA---ATC ACCG--ATC .4 A C G T .2 .4 .2 .2 .6 .6 A C G T .8 A C G T A C G T .8 A C G T 1 A C G T A C G T 1. 1. .4 1. 1. .8 .2 .8 .2 .2 .2 .2 .8 ACA---ATG 0.8x1x0.8x1x0.8x0.4x1x1x0.8x1x0.2 = 3.3x10-2
30
Align sequence to HMM ACA---ATG 0.8x1x0.8x1x0.8x0.4x1x0.8x1x0.2 = 3.3x10-2 TCAACTATC 0.2x1x0.8x1x0.8x0.6x0.2x0.4x0.4x0.4x0.2x0.6x1x1x0.8x1x0.8 = x10-2 ACAC--AGC = 1.2x10-2 AGA---ATC = 3.3x10-2 ACCG--ATC = 0.59x10-2 Consensus: ACAC--ATC = 4.7x10-2, ACA---ATC = 13.1x10-2 Exceptional: TGCT--AGG = x10-2
31
Align sequence to HMM - Null model
Score depends strongly on length Null model is a random model. For length L the score is 0.25L Log-odds score for sequence S Log( P(S)/0.25L) Positive score means more likely than Null model ACA---ATG = 4.9 TCAACTATC = 3.0 ACAC--AGC = 5.3 AGA---ATC = 4.9 ACCG--ATC = 4.6 Consensus: ACAC--ATC = 6.7 ACA---ATC = 6.3 Exceptional: TGCT--AGG = -0.97 Note!
32
Model decoding (Viterby) The unfair casino
Log model -0.02 -0.05 1:-0.78 2:-0.78 3:-0.78 4:-0.78 5:-0.78 6:-0-78 1:-1 2:-1 3:-1 4:-1 5:-1 6:-0.3 -1.3 Example: -1 FFFFLLL Fair Loaded 1 2 4 5 6 F -0.78 -1.58 -2.38 -3.18 -3.98 -4.78 -5.58 L Null -3.08 -3.88 -4.68 -5.13 -5.48
33
HMM’s and weight matrices
In the case of un-gapped alignments HMM’s become simple weight matrices To achieve high performance, the emission frequencies are estimated using the techniques of Sequence weighting Pseudo counts
34
Profile HMM’s Alignments based on conventional scoring matrices (BLOSUM62) scores all positions in a sequence in an equal manner Some positions are highly conserved, some are highly variable (more than what is described in the BLOSUM matrix) Profile HMM’s are ideal suited to describe such position specific variations
35
Profile HMM’s Core: Position with < 2 gaps Insertion Conserved
Deletion ADDGSLAFVPSEF--SISPGEKIVFKNNAGFPHNIVFDEDSIPSGVDASKISMSEEDLLN TVNGAI--PGPLIAERLKEGQNVRVTNTLDEDTSIHWHGLLVPFGMDGVPGVSFPG---I -TSMAPAFGVQEFYRTVKQGDEVTVTIT-----NIDQIED-VSHGFVVVNHGVSME---I IE--KMKYLTPEVFYTIKAGETVYWVNGEVMPHNVAFKKGIV--GEDAFRGEMMTKD--- -TSVAPSFSQPSF-LTVKEGDEVTVIVTNLDE------IDDLTHGFTMGNHGVAME---V ASAETMVFEPDFLVLEIGPGDRVRFVPTHK-SHNAATIDGMVPEGVEGFKSRINDE---- TKAVVLTFNTSVEICLVMQGTSIV----AAESHPLHLHGFNFPSNFNLVDPMERNTAGVP TVNGQ--FPGPRLAGVAREGDQVLVKVVNHVAENITIHWHGVQLGTGWADGPAYVTQCPI Core: Position with < 2 gaps
36
HMM vs alignment Detailed description of core
ADDGSLAFVPSEF--SISPGEKIVFKNNAGFPHNIVFDEDSIPSGVDASKISMSEEDLLN TVNGAI--PGPLIAERLKEGQNVRVTNTLDEDTSIHWHGLLVPFGMDGVPGVSFPG---I -TSMAPAFGVQEFYRTVKQGDEVTVTIT-----NIDQIED-VSHGFVVVNHGVSME---I IE--KMKYLTPEVFYTIKAGETVYWVNGEVMPHNVAFKKGIV--GEDAFRGEMMTKD--- -TSVAPSFSQPSF-LTVKEGDEVTVIVTNLDE------IDDLTHGFTMGNHGVAME---V ASAETMVFEPDFLVLEIGPGDRVRFVPTHK-SHNAATIDGMVPEGVEGFKSRINDE---- TKAVVLTFNTSVEICLVMQGTSIV----AAESHPLHLHGFNFPSNFNLVDPMERNTAGVP TVNGQ--FPGPRLAGVAREGDQVLVKVVNHVAENITIHWHGVQLGTGWADGPAYVTQCPI Detailed description of core Conserved/variable positions Price for insertions/deletions varies at different locations in sequence These features cannot be captured in conventional alignments
37
All M/D pairs must be visited once
Profile HMM’s All M/D pairs must be visited once
38
Example Sequence profiles
Alignment of protein sequences 1PLC._ and 1GYC.A E-value > 1000 Profile alignment Align 1PLC._ against Swiss-prot Make position specific weight matrix from alignment Use this matrix to align 1PLC._ against 1GYC.A E-value < Rmsd=3.3
39
Example continued Score = 97.1 bits (241), Expect = 9e-22 Rmsd=3.3 Å
Identities = 13/107 (12%), Positives = 27/107 (25%), Gaps = 17/107 (15%) Query: 3 ADDGSLAFVPSEFSISPGEKI------VFKNNAGFPHNIVFDEDSIPSGVDASKIS 56 F G N G + + Sbjct: VFPSPLITGKKGDRFQLNVVDTLTNHTMLKSTSIHWHGFFQAGTNWADGP 79 Query: 57 MSEEDLLNAKGETFEVAL---SNKGEYSFYCSP--HQGAGMVGKVTV 98 A G +F G G+ G V Sbjct: 80 AFVNQCPIASGHSFLYDFHVPDQAGTFWYHSHLSTQYCDGLRGPFVV 126 Rmsd=3.3 Å Model red Template blue
40
TMHMM (trans-membrane HMM) (Sonnhammer, von Heijne, and Krogh)
Difference in amino acid composition. Easy in HMM. Difficult in alignment. Model TM length distribution. Easy in HMM. Difficult in alignment.
41
HMM packages NET-ID, HMMpro (http://www.netid.com/html/hmmpro.html)
HMMER ( S.R. Eddy, WashU St. Louis. Freely available. SAM ( R. Hughey, K. Karplus, A. Krogh, D. Haussler and others, UC Santa Cruz. Freely available to academia, nominal license fee for commercial users. META-MEME ( William Noble Grundy, UC San Diego. Freely available. Combines features of PSSM search and profile HMM search. NET-ID, HMMpro ( Freely available to academia, nominal license fee for commercial users. Allows HMM architecture construction.
42
trainanhmm 1.221 Copyright (C) 1998 by Anders Krogh
The unfair casion: Loaded die p(6) = 0.5; switch fair to load:0.05; switch load to fair: 0.1 Header {alphabet ;} begin { trans Fair:0.5 Loaded:0.5; } Fair { trans Fair:0.95 Loaded:0.05; Loaded { trans Fair:0.1 Loaded:0.9; letter 6:0.5; 0.95 0.9 1:1/6 2:1/6 3:1/6 4:1/6 5:1/6 6:1/6 1:1/10 2:1/10 3:1/10 4:1/10 5:1/10 6:1/2 0.05 0.10 Fair Loaded
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.