Presentation is loading. Please wait.

Presentation is loading. Please wait.

Capacitance and Dielectrics

Similar presentations


Presentation on theme: "Capacitance and Dielectrics"β€” Presentation transcript:

1 Capacitance and Dielectrics
Capacitance examples Energy stored in capacitor Dielectrics Nat’s research (just fun stuff)

2 Capacitance Electric potential always proportional to charge
Point 𝑉= π‘˜π‘„ π‘Ÿ Sheet 𝑉= 𝑄𝑑 𝐴Ρ π‘œ Ξ΅ 0 = 1 4Ο€π‘˜ =8.85βˆ™ 10 βˆ’12 𝐢 2 /𝑁 π‘š 2 Wire 𝑉= 𝑄 2Ο€ Ξ΅ π‘œ 𝐿 ln π‘Ÿ Define capacitance as ratio: 𝐢= 𝑄 𝑉 (𝑒𝑛𝑖𝑑𝑠 𝐢 𝑉 ) 𝐢= Ξ΅ π‘œ 𝐴 𝑑 (𝑒𝑛𝑖𝑑𝑠 (𝐢 2 /𝑁 π‘š 2 ) π‘š 2 π‘š = 𝐢 2 π‘π‘š = 𝐢 𝑉 ) Measure of geometry’s ability to store charge Charge create a voltage, but voltage requires charge

3 Capacitance of Parallel Plate
Constant electric field between two conducting sheets 𝐸= 𝜎 πœ€ π‘œ = 𝑄 πœ€ π‘œ 𝐴 πœ€ π‘œ =8.85βˆ™ 10 βˆ’12 𝐢 2 𝑁 π‘š 2 Potential between sheets 𝑉= 𝑄𝑑 πœ€ π‘œ 𝐴 Capacitance across sheets 𝐢= 𝑄 𝑉 = 𝑄 𝑄𝑑 πœ€ π‘œ 𝐴 = πœ€ π‘œ 𝐴 𝑑 With Dielectric between 𝐢= 𝐾 πœ€ π‘œ 𝐴 𝑑 π‘‘π‘–π‘“π‘“π‘’π‘Ÿπ‘’π‘›π‘‘ "𝐾"=π‘‘π‘–π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘

4 Capacitance Typical capacitors Temporarily store charge in circuit
Example: AC to DC power supply

5 Capacitance examples 𝐢= 𝑄 𝑉 = 2500βˆ™ 10 βˆ’6 𝐢 850 𝑉 =3.06πœ‡πΉ
𝑄=𝐢𝑉= 7βˆ™ 10 βˆ’6 𝐢 𝑉 12 𝑉 =84πœ‡πΆ 𝐢= πœ€ π‘œ 𝐴 𝑑 𝐴= 𝐢𝑑 πœ€ π‘œ = 𝐢 𝑉 π‘š 8.85βˆ™ 10 βˆ’12 𝐢 2 𝑁 π‘š 2 = 𝐢 𝐽 𝐢 π‘š 8.85βˆ™ 10 βˆ’12 𝐢 2 𝑁 π‘š 2 =4.98 βˆ™ 10 7 π‘š <<<Huge

6 Capacitance examples 𝐸= 𝑄 πœ€ π‘œ 𝐴 𝑄= πœ€ π‘œ 𝐴𝐸
𝐸= 𝑄 πœ€ π‘œ 𝐴 𝑄= πœ€ π‘œ 𝐴𝐸 = 8.85βˆ™ 10 βˆ’12 𝐢 2 𝑁 π‘š π‘š βˆ™ 𝑉 π‘š =26.3 𝑛𝐢 𝑉= 𝑄 𝐢 = 72βˆ™ 10 βˆ’6 𝐢 0.8βˆ™ 10 βˆ’6 𝐢 𝑉 =90 𝑉 𝐸= 𝑉 𝑑 = 90 𝑉 .002 π‘š =45,000 𝑉/π‘š

7 Capacitance examples 𝑄=𝐢𝑉 βˆ†π‘„=πΆβˆ†π‘‰ 18 πœ‡πΆ=𝐢 βˆ™ 24 𝑉 𝐢=0.75 πœ‡πΆ

8 Materials can do 2 things:
Electrical Properties of Materials Materials can do 2 things: Polarize Initial alignment of charge with applied voltage Charge proportional to voltage Temporary short-range alignment Conduct Continuous flow of charge with applied voltage Current proportional to voltage Continuous long-range movement

9 Dielectrics 𝐢= 𝑄 𝑉 Polarizable material increases capacitance
Partially canceling electric file between plates (battery not hooked up) Drawing more charge to restore field (battery hooked up) 𝐢= 𝑄 𝑉 Capacitance becomes 𝐢= 𝐾Ρ π‘œ 𝐴 𝑑 (𝐾 𝑖𝑠 π‘Ÿπ‘’π‘™π‘Žπ‘‘π‘–π‘£π‘’ π‘‘π‘–π‘’π‘™π‘’π‘π‘‘π‘Ÿπ‘–π‘ π‘π‘œπ‘›π‘ π‘‘π‘Žπ‘›π‘‘) Actually k isn’t a β€œconstant”. Can vary with frequency, temperature, orientation, etc.

10 Dielectric constants

11 Dielectric Spectroscopy (Nat’s Research)
Most insulators contain polar molecules and free ions These can align as a function of frequency (up to a point) Where they fail to align is called β€œrelaxation frequency” Characteristic spectrum

12 Dielectric Permittivity in Epoxy Resin 1 MHz -1 GHz
Aerospace resin Hexcel 8552. High frequency range 1 MHz – 1 GHz. Temperature constant 125Β°C, transition decreases with cure. TDR measurement method.

13 Permittivity in Epoxy Resin during Complete Cure Cycle

14 Application to cement hydration
Cement Conductivity - Variation with Cure Imaginary counterpart of real permittivity (ο₯’’). Multiply by  to remove power law (ο₯oο₯’’). Decrease in ion conductivity, growth of intermediate feature with cure Frequency of intermediate feature does not match permittivity

15 Basic signal evolution in cement paste3
Permittivity (Ρ’ ) and conductivity (Ξ΅oωΡ’’) from 10 kHz to 3 GHz. Initial behavior at zero cure time. Evolution with cure time. Low, medium, and high (free) relaxations.

16 Dielectric modeling in cement paste
1 Cole-Davidson, 2 Debye relaxations4-7 𝑅𝑒 𝐢 𝑙 1+πœ” 𝜏 𝑙 𝛽 +𝑅𝑒 𝐢 π‘š 1+πœ” 𝜏 π‘š +𝑅𝑒 𝐢 β„Ž 1+πœ” 𝜏 β„Ž + 𝐢 𝑝 πœ” 𝛾 βˆ’πΌπ‘š 𝐢 𝑙 1+πœ” 𝜏 𝑙 𝛽 πœ€ π‘œ πœ”βˆ’πΌπ‘š 𝐢 π‘š 1+πœ” 𝜏 π‘š πœ€ π‘œ πœ”βˆ’πΌπ‘š 𝐢 β„Ž 1+πœ” 𝜏 β„Ž πœ€ π‘œ πœ”+ 𝐢 𝑖

17 Model evolution with cement cure
MS&T 07 Model evolution with cement cure Free-relaxation decreases as water consumed in reaction. Bound-water8, grain polarization9 forms with developing microstructure. Variations in frequency and distribution factor. Conductivity decrease does not match free-water decrease.

18 Energy stored in capacitor
Work to move charge across V π‘Š=𝑄 𝑉 π‘Žπ‘£π‘” =𝑄 𝑉 π‘œ +𝑉 = 1 2 𝑄𝑉 Define 𝑃𝐸=π‘’π‘›π‘’π‘Ÿπ‘”π‘¦= 1 2 𝑄𝑉= 1 2 𝐢 𝑉 2 = 𝑄 2 𝐢 Example 17-11 𝑃𝐸= 1 2 𝐢 𝑉 2 = βˆ™ 10 βˆ’6 𝐢 𝑉 𝑉 2 =36 πΆβˆ™π‘‰=36𝐽 π‘ƒπ‘œπ‘€π‘’π‘Ÿ= 36 𝐽 10 βˆ’3 𝑠 =36 π‘˜π‘Š V +

19 Energy stored in capacitor’s field
𝑃𝐸= 1 2 𝐢 𝑉 2 = πœ€ π‘œ 𝐴 𝑑 𝐸𝑑 2 = 1 2 πœ€ π‘œ 𝐸 2 (𝐴𝑑) Energy density 𝑃𝐸 π‘£π‘œπ‘™π‘’π‘šπ‘’ = πœ€ π‘œ 𝐢 𝐸 2 𝐴𝑑 π‘£π‘œπ‘™π‘’π‘šπ‘’ = 1 2 πœ€ π‘œ 𝐸 2 Energy Density proportional to field squared! V +

20 TDR Dielectric Spectroscopy
Sensor admittance from incident and reflected Laplace Transforms. Sample complex permittivity from sensor admittance. Differential methods Bilinear calibration methods.1 Non-uniform sampling.2


Download ppt "Capacitance and Dielectrics"

Similar presentations


Ads by Google